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OTVIC: A Dataset with Online Transmission for
Vehicle-to-Infrastructure Cooperative 3D Object Detection

He Zhu'?, Yunkai Wang'2, Quyu Kong?, Yufei Wei', Xunlong Xia?, Bing Deng?, Rong Xiong', Yue Wang!f

Abstract— Vehicle-to-infrastructure cooperative 3D object
detection (VIC3D) is a task that leverages both vehicle and road-
side sensors to jointly perceive the surrounding environment.
However, considering the high speed of vehicles, the real-time
requirements, and the limitations of communication bandwidth,
roadside devices transmit the results of perception rather than
raw sensor data or feature maps in our real-world scenarios.
And affected by various environmental factors, the transmission
delay is dynamic. To meet the needs of practical applications,
we present OTVIC, which is the first multi-modality and multi-
view dataset with online transmission from real scenes for
vehicle-to-infrastructure cooperative 3D object detection. The
ego-vehicle receives the results of infrastructure perception in
real-time, collected from a section of highway in Chengdu,
China. Moreover, we propose LfFormer, which is a novel end-
to-end multi-modality late fusion framework with transformer
for VIC3D task as a baseline based on OTVIC. Experiments
prove our fusion framework’s effectiveness and robustness. Our
project is available at https://sites.google.com/view/
otvic.

I. INTRODUCTION

Autonomous driving is a technology capable of operat-
ing vehicles independently and safely on roads to achieve
unmanned driving. Currently, there are two main tech-
nological strategies: single-vehicle perception and vehicle-
to-infrastructure cooperative perception [1]. Vehicle-to-
infrastructure cooperative perception allows the ego-vehicle
to communicate with infrastructure and improve the percep-
tive capability, which can solve the shortcomings of single-
vehicle perception, such as the limited sight-of-view and
sensor occlusion or failure [2].

Currently, most datasets for vehicle-to-infrastructure
or vehicle-to-everything cooperative perception are col-
lected from simulated environments, such as Cooplnf [3],
CARTI [4], V2X-Sim [5], V2XSet [6], and so on. However,
in real-world scenarios, perception data from infrastructure
needs to be transmitted to the vehicles in real-time. And there
are three main issues in our scenario: 1) Transmission delays
and inference time of the infrastructure perception algorithm
can lead to temporal asynchrony. Due to the influence of en-
vironmental factors such as geographical location or weather

*This work was supported by the National Nature Science Foundation of
China under Grant 62373322.

*This research was supported by Zhejiang Provincial Natural Science
Foundation of China under Grant No. LD24F030001.

*This work was supported in part by the Alibaba Group through Alibaba
Innovative Research (AIR) Program.

1Zhejiang University, Hangzhou, P.R. China.

2 Alibaba Cloud, Hangzhou, P.R. China.

t Corresponding author, Yue Wang wangyue@iipc.zju.edu.cn
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Fig. 1. A diagram illustrating vehicle-to-infrastructure scenarios. Roadside
devices utilize multiple cameras for perception, transmitting structured data
of perception results through Road Side Unit (RSU) online. The ego-vehicle
is equipped with cameras, lidar, IMU, GPS, and other sensors. When the
vehicle gets close to the roadside devices, it uses the On-Board Unit (OBU)
to receive perception data from the infrastructure and fuses it with the
vehicle’s own sensors data to achieve vehicle-to-infrastructure cooperative
perception.

conditions, the transmission delay changes dynamically in
real scene. 2) In highway scenarios, because of the high
vehicle speeds, even minimal delays can result in significant
spatial misalignments. And it will lead to the problem of
feature blurring, which could potentially decrease the per-
formance of vehicle-to-infrastructure cooperative perception.
3) The roadside device provides perception for an area of
800 x 80 m? based on 7 or 8 images with 4K resolution [7].
Due to the peak data transfer rate from RSU to OBU is 31.7
Mbps theoretically and only 15.6 Mbps in practice, it’s hard
to transmit raw sensor data or feature maps in real-time.

In this paper, we present OTVIC, which is the first multi-
modality and multi-view dataset with Online Transmission
from real scenes for Vehicle-to-Infrastructure Cooperative
perception. Online transmission refers to the real-time data
transfer between vehicles and infrastructure under varying
communication conditions and noise levels. The purpose of
the dataset is to improve the robustness and generalization
performance of late fusion in challenging environments such
as dynamic delay, high vehicle speeds and communication
noises. A diagram illustrating vehicle-to-infrastructure sce-
narios is shown in Fig. 1. Each frame of the dataset contains
four images captured by the ego-vehicle’s cameras (including
front, rear, left, and right view images), lidar point clouds,
ego-vehicle localization and motion information (including
the vehicle’s position, velocity, acceleration, heading angle,
and angular velocity), as well as the results of infrastructure
perception (including the objects’ type, position, heading
angle, velocity, acceleration, tracking ID, and delay).
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(a) Infrastructure’s sensors

(b) Ego-vehicle’s ‘sensors

(c) An example from our dataset with 3D an-
notation

Fig. 2. Visualization of infrastructure and vehicle system as well as dataset. Subfigures (a) and (b) show respectively the actual sensors of the infrastructure

and the ego-vehicle. In subfigure (c),

boxes are ground truth and blue boxes are the detection results of infrastructure perception. Due to inference

time of algorithm and transmission delays from the roadside to the vehicle, the infrastructure perception data lags behind the vehicle’s perception data.

To address the challenge of vehicle-to-infrastructure co-
operative 3D object detection in real-world scenarios, we
propose an end-to-end multi-modality late fusion framework
based on transformer. The key idea is to encode the anchors
predicted from infrastructure perception into infrastructure
querie for fusion. Its input consists of the sensor data from
vehicle and the received perception results from infrastruc-
ture, with the output being 3D object detection results in the
ego-vehicle’s lidar coordinate system. Its input can also be
replaced with other agents’ perception results, so it can be
readily extended to Vehicle-to-Vehicle (V2V) and Vehicle-
to-Everything (V2X) collaborative perception scenarios.

In summary, our contributions are two-fold:

e We propose OTVIC, the first multi-modality and multi-
view dataset with online transmission for vehicle-
to-infrastructure cooperative 3D object detection. All
frames are captured from real scenes in which the
vehicle receives the results of infrastructure perception
in real-time.

e We introduce LfFormer, a novel end-to-end multi-
modality late fusion framework with transformer as
a baseline based on OTVIC. The results show the
effectiveness and robustness of our fusion framework.

II. RELATED WORKS

A. Vehicle-to-Infrastructure Datasets

The vehicle-to-infrastructure (V2I) datasets can primarily
be collected either from simulators or real-world. Although
collecting from simulators is low-cost and easy to implement,
it is challenging to simulate the variety of problems that
may be encountered in real-world scenes. DAIR-V2X-C [8]
is the first multi-modality and multi-view V2I dataset from
real scenarios. V2X-Seq (SPD) [9] is the first temporal per-
ception dataset for V2I cooperative 3D object detection and
tracking in real-world scenarios. However, in both datasets,
the vehicle is only equipped with a single forward camera,
which does not allow for the research of multi-view bird’s
eye view (BEV) perception algorithms of camera-only. The
speed of vehicles in these dataset is also slower than ours.
Furthermore, these datasets do not account for the dynamics
of delay, bandwidth and real-time requirements of actual
V2X communication.

TABLE I
VEHICLE HARDWARE SPECIFICATIONS
Sensor Details
LiDAR Velodyne VLP-32C, 32 beams, 10 Hz capture frequency,
360° horizontal FOV, —25° to 15° vertical FOV, 200 m
capture range
Camera OAK-FFC-4P board with four OV9782 cameras, RGB, 20
Hz capture frequency, 1280 x 800 resolution, 120° FOV
GPS/RTK ~ CHCNAV P3DU, 20 Hz update rate

IMU Xsens MTi-G-700, 400 Hz update rate

CAN/LIN  Kvaser Hybrid, 100 Hz update rate
OBU Nebula, LTE-V2X, 5905-5915 MHz frequency bands
Ve
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Fig. 3. Sensor setup for the ego-vehicle in OTVIC.

B. Multi-Modality Fusion Perception

Multi-modality fusion perception is the integration of
heterogeneous information collected by different sensors,
such as lidar, radar, and camera, which can enhance the
effectiveness and robustness of perception compared to using
a single sensor. Based on the different fusion stages, it can
be categorized into early fusion, intermediate fusion, and late
fusion. The core idea of early fusion is to extract information
from images to enhance or filter the point clouds, followed
by a point cloud detector to obtain the perception re-
sults. Examples include F-PointNet [10], PointPainting [11],
PointAugmenting [12], and so on. The notion of intermediate
fusion is to fuse the feature maps which are extracted from
the different sensors’ data, such as BEVFusion [13], [14]
and TransFusion [15]. Late fusion is to fuse the perception
results obtained from different sensors, like CLOCs [16] and
Fast-CLOCs [17].

C. Vehicle-to-Infrastructure Collaborative Perception

Vehicle-to-infrastructure cooperative perception uses the
sensors from both vehicle and infrastructure to jointly ac-
complish the perception task of the surrounding environment.



TABLE II
COMPARISON BETWEEN VEHICLE-TO-INFRASTRUCTURE COOPERATIVE PERCEPTION DATASET.

Dataset Year Source Scenario Transmission Image Point cloud IMU/GPS  Frames
Cooplnf [3] 2020 CARLA [23] T-junction & Roundabout Offline v X X 10,000
CARTI [4] 2022 CARLA [23] Crossroads Offline X v X 11,000
WIBAM [24] 2021 Real-World Crossroads Offline v X X 33,092
DAIR-V2X-C [8] 2021 Real-World Intersections Offline v v v 9,331

V2X-Seq (SPD) [9] 2023 Real-World Intersections Offline v v v 15,000
OTVIC (Ours) 2024 Real-World Highway Online v v v 15,045

Similarly, the cooperative perception models can be catego-
rized based on the fusion stage into early, intermediate, and
late fusion. Early fusion [18], [19] directly transforms raw
data and merges it to form a comprehensive perception. This
method tend to require a large communication bandwidth
due to the large scale of the raw data and is difficult to
operate in real-time. Intermediate fusion [6], [20], [21] fuses
the feature maps from both sides into a unified feature
representation. This method achieves a balance between
accuracy and transmission bandwidth. However, compression
and decompression of feature maps may result in some loss.
Additionally, due to significant temporal asynchrony and
spatial misalignment in highway scenarios, this may lead
to blurring and misalignment of the feature maps, which
can easily lead to performance degradation. Late fusion
combines the outputs of perception from infrastructure and
vehicle. Existing works often use non-maximum suppres-
sion (NMS) [22]. Although this method requires minimal
communication bandwidth, which can meet the requirements
of practical applications, the perception accuracy of this
method is relatively low. In a real-time system, we need
to consider issues such as delay, bandwidth limitations, and
communication noise, which are critical for the vehicle-to-
infrastructure cooperative perception system.

III. SYSTEM AND DATASET

In order to research vehicle-to-infrastructure cooperative
perception that can be practically applied, we establish
systems for infrastructure and vehicle in real world and
propose the OTVIC dataset. Here we describe how to collect
data in real-time and annotate the dataset. Finally, we present
a statistical analysis of the dataset. A visualization of the
systems and the dataset is depicted in Fig. 2.

A. Infrastructure System

The infrastructure perception system is comprised of 7
or 8§ cameras, an edge computing device, a RSU, and a
cloud platform [7]. The cameras are mounted on 4 poles
with different pitch angles at a height of 10 to 20 meters
above the ground. These poles are installed at set intervals
in the middle of the highway or on the side. Typically,
the cameras on each pole are set to two different focal
lengths to cover both near-range and far-range vehicles. The
edge computing device supports the fusion perception of
seven or eight cameras, providing computational power for
BEV detection algorithms. By utilizing multi-sensor fusion,
the infrastructure can provide perception within an area of
800 by 80 meters. RSU is the communication hub with a
coverage range of 800 meters, transmissing message between

Finish

0

(a) Spatial data cover-
age

(b) Route

Fig. 4. Map for the OTVIC dataset. In subfigure (a), colors indicate the
number of frames with ego vehicle poses within an 80m radius across all
scenes. Subfigure (b) shows the route of data collection in the real world.

the vehicles, other RSUs, and the cloud. It transmits data
to the OBU with frequencies from 5915 to 5925 MHz.
The cloud platform, supported by Alibaba Cloud, is used to
collect data from all roadside devices and conduct real-time
monitoring of the entire road.

B. Vehicle System

The Vehicle System is composed of the perception mod-
ule, the localization module, the communication module, and
a computer. A more detailed description of the hardware
configurations is depicted in the Table I. Specifically, we
carefully calibrate the extrinsics and intrinsics of every sen-
sor. The middleware framework we use is Robot Operating
System (ROS 1).

The perception module consists of four cameras and one
lidar as Fig. 3 shows. The four cameras are oriented towards
the front, rear, left, and right directions of the vehicle, achiev-
ing timestamp alignment among multiple cameras through
millisecond-level hardware synchronization. And the lidar is
mounted on the top of the vehicle.

The localization module consists of an Inertial Measure-
ment Unit (IMU) and a Global Positioning System (GPS).
They are mounted at the center position of the vehicle’s rear
axle. We employ an algorithm based on the Extended Kalman
Filter (EKF) for multi-sensor fusion to achieve accurate
localization. This approach uses data from IMU to predict
the vehicle’s location and applies GPS data to correct the
pose and motion estimates.

The communication module is the On-Board Unit (OBU)
for receiving information from roadside devices in real-time.
Additionally, the vehicle system achieves clock synchroniza-
tion with the infrastructure system through Network Time
Protocol (NTP).
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Analysis of OTVIC dataset. Subfigures (a), (b) and (c) reveal the statistics of the 3D bounding box annotations in our dataset. Subfigure (d)

shows the distribution of speeds for cars and trucks. Subfigure (e) presents the distribution of data size transmitted from RSU to OBU. And subfigure (f)
illustrates the statistics of delay from infrastructure to vehicle. This delay includes the inference time of infrastructure perception algorithm, the real-time
transmission latency from RSU to OBU and the time difference between the timestamp of the received roadside data and the lidar timestamp.

C. OTVIC Dataset

Data Collection. Our dataset is collected on highways
at speeds ranging from 70 to 110 km/h. When the ego-
vehicle drives into the detectable area of the roadside devices,
the perception data received from the roadside and the
sensor data from the ego-vehicle are saved to the local
hard drive of vehicle. Based on the lidar timestamps, the
saved vehicle sensor data are sampled at a frequency of
10Hz to obtain discrete frames. Each frame of vehicle is
matched with the closest frame of infrastructure which is
received in real-time before the current lidar timestamp.
After the data synchronization, we manually select 112
representative scenes, each encompassing several seconds in
duration. Fig. 4 shows spatial coverage across all scenes and
route in the real world. The dataset totals 15,045 frames.
Each frame includes images, point clouds, and localization
and motion information outputted by the localization module
from ego-vehicle, as well as the perception results from
infrastructure.

Data Annotation. In order to get vehicle-to-infrastructure
cooperative annotations, we convert 3D bounding boxes of
infrastructure into the ego-vehicle coordinate system and
fuse the infrastructure annotations and vehicle annotations.
Through multiple validation and refinement steps, expert
annotators make high-quality annotations for each frame
of the dataset. In particular, annotators comprehensively
annotate each of the four object classes in every image
and point cloud with its type, position, size, yaw angle,
3D bounding box, and ID. 4 categories include car, truck,
van, and bus. A total of 24,452 manually annotated vehicles,
including 10,823 cars, 12,750 trucks, 848 vans, and 31 buses.

Data Analysis. As Table II depicts, we compare the open
vehicle-to-infrastructure cooperative perception datasets with
OTVIC. Our dataset is collected in real-time from high-
speed scenarios in which infrastructure sends the results
of perception to vehicles for late fusion. Statistically, the
average speed for moving car and truck categories are
27.99 and 23.04 m/s. The packet loss rate for infrastructure
data is less than 1%. More statistics about the dataset are
illustrated in Fig. 5. In our dataset, the infrastructure data
is a vector with the dimensions (N, 8), including the type,
position, heading angle, velocity, acceleration, ID, and delay
for each object, where N is the number of objects. It has
converted from the coordinate system of the infrastructure
localization (GCJ02) to the ego-vehicle’s lidar coordinate
system. Additionally, we provide the ego-vehicle’s location
and motion information estimated by IMU and GPS, which is
a vector with 6 dimensions, including ego-vehicle’s position,
velocity, acceleration, yaw angle, and angular velocity. It has
also transformed to the lidar coordinate system.

Data Protection. Before the public release, we mask
license plates and faces to protect privacy because of local
laws and regulations. We also erase real geographic informa-
tion by transforming the position into a coordinate system of
a virtual world.

IV. METHOD

In this section, we propose an end-to-end multi-modality
fusion framework based on the OTVIC dataset as a baseline
method. We introduce the overall architecture of the fusion
framework in Fig. 6 and then show the details of LfFormer.
Finally, we demonstrate the loss functions for model training.



Head
t
Decoder
t t
Temporal Fusion ] [ Query-based Fusion
t
BEV Fusion ]

Data transmission
& Coordinate
transformation

Camera BEV Encoder ] [ Lidar BEV Encoder ]

==
Multi-View RGB Images

Point Cloud Infrastructure Perception

Fig. 6. Architecture of Our Fusion Framework (LfFormer). The input is
the multi-view RGB images and point cloud from the ego-vehicle sensor,
as well as the perception results from the infrastructure. The output is 3D
object detection results in the ego-vehicle’s lidar coordinate system.

A. Overall Architecture

In order to addresses various challenges about collab-
orative perception between vehicle and infrastructure, we
propose a feature-result level fusion framework tailored for
real-world application scenarios. In this method, the roadside
unit provides result-level data and sends to the vehicle in real-
time. Given the smaller data volume of result-level data, it
meets the requirements of actual communication bandwidth.
However, infrastructure perception data has asynchronous
and heterogeneous characteristics, with inherent errors and
delays that necessitate spatial and temporal alignment and
compensation. Moreover, the vehicle fuses multi-modality
data from images and point clouds to obtain feature-level
data. Then, we use a novel network based on the Trans-
former [25] to achieve the feature-result level fusion, thereby
accomplishing the task of vehicle-to-infrastructure collabo-
rative perception. It consists of seven sub-modules: Camera
BEV Encoder, Lidar BEV Encoder, BEV Fusion, Temporal
Fusion, Query-based Fusion, Decoder, and Head.

B. LfFormer

Camera and Lidar BEV Encoder. We use ResNet [26]
for feature extraction from images to obtain 2D features. In-
spired by BEVFormer [27], it employs spatial cross-attention
to learn feature representations in the bird’s-eye view (BEV)
space. This method extracts spatial features from regions of
interest across camera views based on a predefined grid of
BEV queries. The Lidar BEV Encoder, using VoxelNet [28]
or PointPillars [29], converts the point clouds into Voxel or
Pillars features, which are further flatten into BEV feature.

BEV Fusion. We use a 3x3 convolution layer as the
BEV fusion module, which is designed to fuse BEV features
from both the camera and lidar effectively. It reduces the
BEV features of camera and lidar from the dimensions
[B7 Ccame'r‘a + Clida,ra H7 W] to [B, Cfusiony H, W]

Temporal Fusion. In order to fuse historical BEV features
and learn rich information such as the motion characteristics
of detected objects, we use a temporal fusion module based
on temporal self-attention [27] to enhance the performance
of perception. It uses the ego-vehicle motion information to
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Fig. 7. The details of Query-based Fusion.

align the BEV features of the previous frame to the current
frame, and then fuses with the BEV features of the current
frame.

Query-based Fusion. To integrate roadside perception
data, we propose a query-based fusion module. The key
idea is to encode the anchors from infrastructure perception
into infrastructure queries after prediction and sampling. The
details of this module is illustrated in Fig. 7. First, we use
a historical sequence of infrastructure perception to predict
based on the equations of motion with constant acceleration,
and then anchors are sampled around the predicted positions.
Subsequently, these anchors are encoded into infrastructure
query using a MLP network. Finally, they are concatenated
with vehicle query which is predicted by heatmap [15].

Decoder. The decoder is a standard Transformer [25]
decoder which is composed of a self-attention layer, a cross-
attention layer, and a feed forward network. The fused BEV
features output by the temporal fusion module serve as the
key and value for the decoder, while the output from the
query-based fusion module is the decoder’s query.

Head. The head includes two branches: classification and
regression, which is composed of fully connected networks.
The output of classification branch is the confidence score of
being an object or backgroud. And the output of regression
branch is (x,y,z,l,w,h,d), denoting the position, size,
and yaw angle of the bounding box. Additionally, this fu-
sion framework does not require non-maximum suppression
(NMS) post-processing.

C. Loss Function

In this fusion framework, we use the bipartite matching
between the predicted bounding boxes and ground truth
through the Hungarian algorithm [30]. We adopt a [; loss
for regression of bounding boxes and a focal loss for object
classification. And the Gaussian focal loss function is used
for the prediction of the heatmap. Our total loss function con-
sists of a weighted sum of the regression loss, classification
loss, and heatmap loss:

Loss = w, Ly + weLe + wp L, €))

where w,, w. and wy, represent respectively the weight of
the regression loss, classification loss and heatmap loss.

V. EXPERIMENTS

In this section, we present a V2I 3D object detection
benchmark on our OTVIC dataset and analyze the ex-



TABLE III

3D OBJECT DETECTION BENCHMARK ON OTVIC.

Modality Fusion Model mAPy_40m MAP10—80m MAPyyerall
No Fusion Vehicle-only-C 0.518 0.228 0.421
Imace Late Fusion NMS 0.527 0.249 0.432
2 Late Fusion TCLF [8] 0.530 0.261 0.439
Late Fusion LfFormer-C 0.531 0.309 0.458
No Fusion Vehicle-only 0.792 0.652 0.761
Image & Pointcloud Late Fusion NMS 0.794 0.679 0.768
2 Late Fusion TCLF [8] 0.803 0.681 0.773
Late Fusion  LfFormer (Ours) 0.807 0.702 0.784

perimental results quantitatively and qualitatively. Finally,
we conduct robustness and ablation studies on the OTVIC
dataset for the LfFormer model.

A. Benchmark Models

To reduce sensor costs, some autonomous vehicles are
equipped only with multiple cameras, omitting the use of
lidar. Here we compare the performance of different methods
based on two modalities.

Since the OTVIC dataset contains infrastructure perception
results rather than raw sensor data, we choose the late fusion
method, including Non-Maximum Suppression (NMS) and
Time Compensation Late Fusion (TCLF) [8] as our baselines.
In order to compare cooperative perception and single-
vehicle perception, we also investigate the model perfor-
mance without infrastructure perception, named vehicle-only.

Vehicle-only. We use the aforementioned fusion frame-
work (LfFormer) without infrastructure perception input as
the vehicle-only perception model. The model without the
lidar stream is called Vehicle-only-C. Here we choose BEV-
Former [27] as the camera stream and VoxelNet [28] as the
lidar stream.

Non-Maximum Suppression (NMS). We use vehicle-
only models to estimate the bounding boxes with confidence
scores. The perception results from infrastructure are pre-
dicted using a constant acceleration model. NMS is applied
to these proposals from both vehicle and infrastructure to
generate the final 3D object detection.

Time Compensation Late Fusion (TCLF). The TCLF
predicts and matches the bounding boxes across successive
infrastructure frames. For matched vehicles, it computes
their velocities directly. For unmatched vehicles, a learning-
based method is used to predict their velocities. And then
it approximates the positions of the current frame by linear
interpolation and fuses them with the perception results from
the ego-vehicle.

B. Metrics

The evaluation metric uses the mean Average Precision
(mAP) for all categories of objects across different distance
ranges. Similar to nuscenes [31], we calculate precision-
recall curve at different thresholds, defining a match by the
2D center distance d on the ground plane, rather than inter-
section over union (IOU) for each object category. Then, we
calculate the Average Precision (AP) as the normalized area
under the precision-recall curve, excluding operating points
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Fig. 8. Average Precisio (AP) for each class at different distance thresholds.
Subfigure (a) and (b) compare the AP for car and truck using the Vehicle-
only-C and LfFormer-C models. Subfigure (c) and (d) compare the AP for
car and truck using the Vehicle-only and LfFormer models.

with recall or precision below 10% to reduce noise impact.
If no points meet this criterion, the AP for that category
is zero. Finally, we average over matching thresholds of
M = {0.5,1,2,4} meters and summarize the AP values
across all categories to obtain the mAP. Assuming the set of
classes is N, the formula for computing mAP is as follows:

1
‘MHN‘ Z ZAPTTL,’IL

meMneN

mAP =

@)

C. Experiment Details

The dataset is divided into training, validation, and test
sets in a 7:1:2 ratio. Given the scarcity of vans and buses
in the dataset, the model training will only consider two
categories of objects: car and truck. The LfFormer model
training adopts a three-stage approach. We use the AdamW
optimizer to iteratively update the network parameters for
all stages. Firstly, we train the camera stream for 24 epochs
where the initial learning rate is set as 5e~° and the weight
decay is set as 0.01. Secondly, we train the lidar stream
for 12 epochs. We set the learning rate to 6.25¢~°% and
set the weight decay to 0.01. Finally, based on the camera
and lidar streams from the above two steps, our vehicle-
to-infrastructure collaborative perception model is trained
for 6 epochs with the initial learning rate 1.25¢~% and the
weight decay 0.05. Our proposed detection network is trained
on four Nvidia 3090 GPU with batch size 4. We set the
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D. Benchmark Analysis

Quantitative evaluation. We compare the performance
of different methods and present a 3D object detection
benchmark for V2I cooperative 3D object detection across
three range intervals: 0-40 m, 40-80 m, and 0-80 m (overall).
In Table III, we can see that the detection performance of
cooperative perception is better than single-vehicle percep-
tion and our proposed fusion framework achieves the highest
mAP. Due to the short focal length of the camera, distant
objects in the image are small, resulting in a lower mAP for
camera-only methods. However, the infrastructure perception
data can improve the performance for the detection of distant
objects. The AP curves for each category at different distance
thresholds are shown in Fig. 8. Compared to single-vehicle
perception, our cooperative perception fusion framework has
a major increase of AP at distance thresholds of 1, 2, and 4.

Qualitative evaluation. Because it’s difficult to compare
differences in 3D bounding boxes within images, we project
the detection results into the lidar coordinate system for all
methods. Firstly, we illustrate the detection results of vehicle-
only in Fig. 9. Due to the effects of temporal asynchrony
and spatial misalignment, the precision of infrastructure

TABLE IV
ROBUSTNESS EXPERIMENTS UNDER DIFFERENT SCENARIOS ON THE
OTVIC DATASET FOR LFFORMER.

Scenarios Interval / Ratio mAP

0 — 300 ms 0.786

Dela 300 — 600 ms 0.785

Y 600 — 900 ms 0.778

> 900 ms 0.777

25% 0.782

50% 0.779

Packet dropout 5% 0.775
100% 0.761

perception is lower. However, it can detect all objects because
of a larger field of view for perception. Influenced by the
limited perception field of view for ego-vehicle, there are
problems of detecting distant objects, whereas the detection
accuracy for nearby objects is relatively high. Additionally,
vehicle-only method also struggle to detect objects that are
obscured, such as the oncoming vehicles obscured by the
median strip. And we also illustrate the detection results
of LfFormer-C and LfFormer in Fig. 10. With the help
of infrastructure perception, LfFormer-C has better perfor-
mance than Vehicle-only-C. Because of the input of point
clouds, LfFormer exhibits better performance than LfFormer-
C, achieving precise compensation and outstanding detection
results.

E. Robustness Analysis

To test the robustness of the model, we select two scenar-
ios: different online transmission delays and packet dropout
ratios for perception data received from the infrastructure, as
shown in Table IV.

Robustness to delay. In our dataset, the inference latency
of the roadside perception algorithm and the transmission de-
lay from infrastructure to vehicle are dynamically changing.
Here we calculate the performance at various delays: 0-300
ms, 300-600 ms, 600-900 ms, and over 900 ms. Because
we retrieve historical infrastructure perception and predict in
order to compensate for the delay in our fusion framework,
we can see that LfFormer still performs well even when the
delay is high.

Robustness to packet dropout. We simulate different
packet loss rates by randomly dropping the data received
every second from infrastructure. Here we simulate the
infrastructure perception packet dropout ratios of 25%, 50%,
75%, as well as 100% and evaluate the performance of our
fusion framework under each condition. The results indicate
that as the packet dropout ratio grows, there is a decline in
the model’s performance.

F. Ablation Study

We conduct ablation study on the OTVIC dataset for the
LfFormer model. Table V assesses the effectiveness of the
proposed operations, including prediction on infrastructure
perception and anchor sampling. We can see that: i) the
prediction module for infrastructure perception can effec-
tively compensate for the temporal asynchrony. ii) Sampling
anchors at the predicted locations can mitigate the impact of



TABLE V
ABLATION STUDY ON THE OTVIC DATASET FOR LFFORMER.

Prediction Sample mAP
X X 0.766
v X 0.773
4 v 0.784

spatial misalignments caused by inaccuracies in infrastruc-
ture perception or prediction.

VI. CONCLUSION

In this paper, we propose a dataset and a late fusion
framework based on the various issues and challenges of
vehicle-to-infrastructure cooperative perception in real-world
scenarios. This method effectively leverages the accuracy of
vehicle perception and the global perspective of infrastruc-
ture perception with small communication bandwidth, pro-
viding a safer and more reliable perception for autonomous
driving. It can be easily extended to Vehicle-to-Vehicle
(V2V) and Vehicle-to-Everything (V2X) collaborative sce-
narios for further research.
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