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一、个人申报
（一）基本情况【围绕《浙江工程师学院（浙江大学工程师学院）工程类专业学位研究生工

程师职称评审参考指标》，结合该专业类别(领域)工程师职称评审相关标准，举例说明】

1.对本专业基础理论知识和专业技术知识掌握情况(不少于200字)

在本专业的基础理论知识和专业技术知识方面，我具备扎实的理论基础和丰富的实践经验。

在基础理论方面，我系统学习了与工程相关的数学、自然科学、人文与社会科学基础知识，

深入理解了人工智能算法与系统、计算机视觉、模式识别等核心课程内容，并能够灵活运用

这些理论知识解决实际问题。在专业技术知识方面，我掌握了行业前沿技术及应用方法，包

括硬件设备、软件算法及其在现实中的具体应用。我熟悉本行业的技术标准、工作流程以及

相关的政策制度和法律法规，能够在实际工作中严格遵循技术规范，确保工程项目的合规性

和安全性。同时，我具备应用现代研究工具和专业软件进行数据分析和仿真模拟的能力，能

够掌握使用传感器和设备在现场采集数据的方法，并开展相关研究与工程实践，为工程建设

和技术研究提供有力支持。

2.工程实践的经历(不少于200字)

我在参与企业项目过程中，我阅读了大量书籍及文献，不断积累工程与学术知识，提高了撰

写中英文文献的能力，提升了解决复杂工程问题的能力，并积极关注行业技术前沿动态及发

展趋势，以保持自身知识体系的先进性。我不仅学习到本专业的知识，还学习到许多交叉的

知识，具备了较强的技术应用创新和工程实践能力，能够结合企业需求，提出切实可行的技

术改进方案，并推动技术成果的转化应用，为企业的技术进步和项目建设贡献力量。此外，

通过此次实践，我培养了职业能力，及时与合作者沟通以发现并解决问题，提高了自己的表

达与组织能力。在遇到困难时不断磨练，勇于担当，学会了保持平和的心态，抱着精益求精

和追求卓越的工匠精神对待工作和学习。

3.在实际工作中综合运用所学知识解决复杂工程问题的案例（不少于1000字)

（1）针对单模态与多模态感知模型部署与集成，我们搭建了一个自动驾驶实车平台，进行

数据的采集与标注，并实现了基于激光雷达、多相机和多传感器融合的3D目标检测模型的训

练、测试与部署。具体来说，模型首先基于nuScenes数据集进行预训练，然后在采集构建的

单车自动驾驶3D目标检测数据集上进行微调，最后对模型通过TensorRT推理引擎进行量化与

优化实现加速推理并设计CUDA核函数实现并行计算，使用ROS通信框架集成从而部署到实车

平台上实时运行，满足自动驾驶场景中对高精度和低时延的实际应用需求。其中，激光雷达

感知采用Centerpoint模型，对其进行FP16精度量化，在NVIDIA AGX 

Orin的计算平台上运行帧率达到25Hz；多相机融合感知采用基于BEVDet改进的模型，对其进

行FP16精度量化，在NVIDIA AGX 

Orin的计算平台上运行帧率达到55FPS；多模态融合采用基于BEVFusion改进的模型，对其进

行INT8和FP16混合精度量化，在NVIDIA AGX Orin的计算平台上运行帧率为23FPS。

（2）针对单车感知的不足，我们搭建了一个车路协同感知系统，利用路端提供的上帝视角

，辅助车端感知，提供一个更加安全、稳定和智能的自动驾驶环境感知。在实际应用场景中

，考虑到车辆的高速度、实时性要求以及通信带宽的限制，路侧设备传输的是感知结果而不

是原始传感器数据或特征图，并且受各种环境因素的影响，传输延迟是动态的。在中国成都

的一段高速公路搭建车路感知系统并进行数据采集与标注，构建了第一个在真实场景中从路

端到车端在线传输的、多模态和多视图的车路协同3D目标检测数据集OTVIC。此外，我们还

提出了一种基于Transformer的新型端到端多模态后融合框架LfFormer，模型对图像和点云

进行特征提取，在BEV视角下实现图像特征和点云特征的融合，再与历史时刻的 BEV 
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特征进行时序融合，利用过去多帧的路侧感知数据进行预测并编码与 BEV 

特征进行交互，从而实现车路协同感知。实验证明了所提出的融合框架有效弥补了时延和坐

标系转换误差所带来的的时间异步和空间错位，具有良好的精度和鲁棒性，同时通信带宽与

速度满足实际应用需求。

（3）在3D占用网格预测任务中，由于计算复杂度高和存储开销大的问题，现有的一些方法

利用稀疏特征表示进行建模实现了较为高效的预测，但检测精度较低。此外，时序融合已经

通过验证可以帮助提高检测精度，增加感知的鲁棒性，但伴随而来的是引入额外的计算用于

多帧信息的融合上，因此需要设计一个高效且稀疏的时序特征融合机制。在此，我们提出了

一个新型方法SparseOcc4D，将环视图像从2D-to-

3D提取到的3D特征转化为稀疏张量，并与历史帧的稀疏特征进行融合后，利用基于3D稀疏卷

积设计的骨干网络和特征金字塔网络对3D稀疏特征进行学习，通过粗略到细化的分割头得到

3D占用网格的预测结果在多个公开数据集上的实验结果表明，SparseOcc4D在效率和准确性

方面均优于稠密特征建模的现有方法。相比于稀疏特征建模方法，由于引入时序融合，虽然

计算开销与显存占用有所增加，但实现了更高的精度，特别是对动态场景的精确建模，展现

了其在自动驾驶感知任务中的潜力。
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（二）取得的业绩（代表作）【限填3项，须提交证明原件（包括发表的论文、出版的著作、专利

证书、获奖证书、科技项目立项文件或合同、企业证明等）供核实，并提供复印件一份】

1. 
公开成果代表作【论文发表、专利成果、软件著作权、标准规范与行业工法制定、著作编写、科技

成果获奖、学位论文等】

成果名称

成果类别 

[含论文、授权专利（含

发明专利申请）、软件著

作权、标准、工法、著作

、获奖、学位论文等]

发表时间/

授权或申

请时间等

刊物名称

/专利授权

或申请号等

本人

排名/

总人

数

备注

特征-

结果级融合的车路协同

感知方法、介质及电子

设备

授权发明专利
2024年06

月18日

专利号：ZL

2023104907

80.1

2/3
导师为第

一作者

OTVIC: A Dataset with 

Online Transmission 

for Vehicle-to-

Infrastructure 

Cooperative 3D Object 

Detection

会议论文
2024年12

月25日

2024 

IEEE/RSJ 

Internatio

nal 

Conference 

on 

Intelligen

t Robots 

and 

Systems 

(IROS)

1/8
EI会议收

录
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2.其他代表作【主持或参与的课题研究项目、科技成果应用转化推广、企业技术难题解决方案、自
主研发设计的产品或样机、技术报告、设计图纸、软课题研究报告、可行性研究报告、规划设计方

案、施工或调试报告、工程实验、技术培训教材、推动行业发展中发挥的作用及取得的经济社会效

益等】
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OTVIC: A Dataset with Online Transmission for
Vehicle-to-Infrastructure Cooperative 3D Object Detection

He Zhu1,2, Yunkai Wang1,2, Quyu Kong2, Yufei Wei1, Xunlong Xia2, Bing Deng2, Rong Xiong1, Yue Wang1†

Abstract— Vehicle-to-infrastructure cooperative 3D object
detection (VIC3D) is a task that leverages both vehicle and road-
side sensors to jointly perceive the surrounding environment.
However, considering the high speed of vehicles, the real-time
requirements, and the limitations of communication bandwidth,
roadside devices transmit the results of perception rather than
raw sensor data or feature maps in our real-world scenarios.
And affected by various environmental factors, the transmission
delay is dynamic. To meet the needs of practical applications,
we present OTVIC, which is the first multi-modality and multi-
view dataset with online transmission from real scenes for
vehicle-to-infrastructure cooperative 3D object detection. The
ego-vehicle receives the results of infrastructure perception in
real-time, collected from a section of highway in Chengdu,
China. Moreover, we propose LfFormer, which is a novel end-
to-end multi-modality late fusion framework with transformer
for VIC3D task as a baseline based on OTVIC. Experiments
prove our fusion framework’s effectiveness and robustness. Our
project is available at https://sites.google.com/view/
otvic.

I. INTRODUCTION
Autonomous driving is a technology capable of operat-

ing vehicles independently and safely on roads to achieve
unmanned driving. Currently, there are two main tech-
nological strategies: single-vehicle perception and vehicle-
to-infrastructure cooperative perception [1]. Vehicle-to-
infrastructure cooperative perception allows the ego-vehicle
to communicate with infrastructure and improve the percep-
tive capability, which can solve the shortcomings of single-
vehicle perception, such as the limited sight-of-view and
sensor occlusion or failure [2].

Currently, most datasets for vehicle-to-infrastructure
or vehicle-to-everything cooperative perception are col-
lected from simulated environments, such as CoopInf [3],
CARTI [4], V2X-Sim [5], V2XSet [6], and so on. However,
in real-world scenarios, perception data from infrastructure
needs to be transmitted to the vehicles in real-time. And there
are three main issues in our scenario: 1) Transmission delays
and inference time of the infrastructure perception algorithm
can lead to temporal asynchrony. Due to the influence of en-
vironmental factors such as geographical location or weather

*This work was supported by the National Nature Science Foundation of
China under Grant 62373322.

*This research was supported by Zhejiang Provincial Natural Science
Foundation of China under Grant No. LD24F030001.

*This work was supported in part by the Alibaba Group through Alibaba
Innovative Research (AIR) Program.

1Zhejiang University, Hangzhou, P.R. China.
2Alibaba Cloud, Hangzhou, P.R. China.
† Corresponding author, Yue Wang wangyue@iipc.zju.edu.cn

Ego-vehicle

Vehicle

Infrastructure

Perception
Results

V2X

Fig. 1. A diagram illustrating vehicle-to-infrastructure scenarios. Roadside
devices utilize multiple cameras for perception, transmitting structured data
of perception results through Road Side Unit (RSU) online. The ego-vehicle
is equipped with cameras, lidar, IMU, GPS, and other sensors. When the
vehicle gets close to the roadside devices, it uses the On-Board Unit (OBU)
to receive perception data from the infrastructure and fuses it with the
vehicle’s own sensors data to achieve vehicle-to-infrastructure cooperative
perception.

conditions, the transmission delay changes dynamically in
real scene. 2) In highway scenarios, because of the high
vehicle speeds, even minimal delays can result in significant
spatial misalignments. And it will lead to the problem of
feature blurring, which could potentially decrease the per-
formance of vehicle-to-infrastructure cooperative perception.
3) The roadside device provides perception for an area of
800×80 m2 based on 7 or 8 images with 4K resolution [7].
Due to the peak data transfer rate from RSU to OBU is 31.7
Mbps theoretically and only 15.6 Mbps in practice, it’s hard
to transmit raw sensor data or feature maps in real-time.

In this paper, we present OTVIC, which is the first multi-
modality and multi-view dataset with Online Transmission
from real scenes for Vehicle-to-Infrastructure Cooperative
perception. Online transmission refers to the real-time data
transfer between vehicles and infrastructure under varying
communication conditions and noise levels. The purpose of
the dataset is to improve the robustness and generalization
performance of late fusion in challenging environments such
as dynamic delay, high vehicle speeds and communication
noises. A diagram illustrating vehicle-to-infrastructure sce-
narios is shown in Fig. 1. Each frame of the dataset contains
four images captured by the ego-vehicle’s cameras (including
front, rear, left, and right view images), lidar point clouds,
ego-vehicle localization and motion information (including
the vehicle’s position, velocity, acceleration, heading angle,
and angular velocity), as well as the results of infrastructure
perception (including the objects’ type, position, heading
angle, velocity, acceleration, tracking ID, and delay).

https://sites.google.com/view/otvic
https://sites.google.com/view/otvic
wangyue@iipc.zju.edu.cn


(a) Infrastructure’s sensors (b) Ego-vehicle’s sensors (c) An example from our dataset with 3D an-
notation

Fig. 2. Visualization of infrastructure and vehicle system as well as dataset. Subfigures (a) and (b) show respectively the actual sensors of the infrastructure
and the ego-vehicle. In subfigure (c), green boxes are ground truth and blue boxes are the detection results of infrastructure perception. Due to inference
time of algorithm and transmission delays from the roadside to the vehicle, the infrastructure perception data lags behind the vehicle’s perception data.

To address the challenge of vehicle-to-infrastructure co-
operative 3D object detection in real-world scenarios, we
propose an end-to-end multi-modality late fusion framework
based on transformer. The key idea is to encode the anchors
predicted from infrastructure perception into infrastructure
querie for fusion. Its input consists of the sensor data from
vehicle and the received perception results from infrastruc-
ture, with the output being 3D object detection results in the
ego-vehicle’s lidar coordinate system. Its input can also be
replaced with other agents’ perception results, so it can be
readily extended to Vehicle-to-Vehicle (V2V) and Vehicle-
to-Everything (V2X) collaborative perception scenarios.

In summary, our contributions are two-fold:

• We propose OTVIC, the first multi-modality and multi-
view dataset with online transmission for vehicle-
to-infrastructure cooperative 3D object detection. All
frames are captured from real scenes in which the
vehicle receives the results of infrastructure perception
in real-time.

• We introduce LfFormer, a novel end-to-end multi-
modality late fusion framework with transformer as
a baseline based on OTVIC. The results show the
effectiveness and robustness of our fusion framework.

II. RELATED WORKS

A. Vehicle-to-Infrastructure Datasets

The vehicle-to-infrastructure (V2I) datasets can primarily
be collected either from simulators or real-world. Although
collecting from simulators is low-cost and easy to implement,
it is challenging to simulate the variety of problems that
may be encountered in real-world scenes. DAIR-V2X-C [8]
is the first multi-modality and multi-view V2I dataset from
real scenarios. V2X-Seq (SPD) [9] is the first temporal per-
ception dataset for V2I cooperative 3D object detection and
tracking in real-world scenarios. However, in both datasets,
the vehicle is only equipped with a single forward camera,
which does not allow for the research of multi-view bird’s
eye view (BEV) perception algorithms of camera-only. The
speed of vehicles in these dataset is also slower than ours.
Furthermore, these datasets do not account for the dynamics
of delay, bandwidth and real-time requirements of actual
V2X communication.

TABLE I
VEHICLE HARDWARE SPECIFICATIONS

Sensor Details

LiDAR Velodyne VLP-32C, 32 beams, 10 Hz capture frequency,
360◦ horizontal FOV, −25◦ to 15◦ vertical FOV, 200 m
capture range

Camera OAK-FFC-4P board with four OV9782 cameras, RGB, 20
Hz capture frequency, 1280× 800 resolution, 120◦ FOV

GPS/RTK CHCNAV P3DU, 20 Hz update rate
IMU Xsens MTi-G-700, 400 Hz update rate
CAN/LIN Kvaser Hybrid, 100 Hz update rate
OBU Nebula, LTE-V2X, 5905-5915 MHz frequency bands

Upward

Downward

X-axis

Y-axis

Z-axis

LIDAR
Top

CAM
Back

CAM
Left

CAM
Front

CAM
Right

IMU/GPS

Fig. 3. Sensor setup for the ego-vehicle in OTVIC.

B. Multi-Modality Fusion Perception

Multi-modality fusion perception is the integration of
heterogeneous information collected by different sensors,
such as lidar, radar, and camera, which can enhance the
effectiveness and robustness of perception compared to using
a single sensor. Based on the different fusion stages, it can
be categorized into early fusion, intermediate fusion, and late
fusion. The core idea of early fusion is to extract information
from images to enhance or filter the point clouds, followed
by a point cloud detector to obtain the perception re-
sults. Examples include F-PointNet [10], PointPainting [11],
PointAugmenting [12], and so on. The notion of intermediate
fusion is to fuse the feature maps which are extracted from
the different sensors’ data, such as BEVFusion [13], [14]
and TransFusion [15]. Late fusion is to fuse the perception
results obtained from different sensors, like CLOCs [16] and
Fast-CLOCs [17].

C. Vehicle-to-Infrastructure Collaborative Perception

Vehicle-to-infrastructure cooperative perception uses the
sensors from both vehicle and infrastructure to jointly ac-
complish the perception task of the surrounding environment.



TABLE II
COMPARISON BETWEEN VEHICLE-TO-INFRASTRUCTURE COOPERATIVE PERCEPTION DATASET.

Dataset Year Source Scenario Transmission Image Point cloud IMU/GPS Frames

CoopInf [3] 2020 CARLA [23] T-junction & Roundabout Offline ✓ ✕ ✕ 10,000
CARTI [4] 2022 CARLA [23] Crossroads Offline ✕ ✓ ✕ 11,000
WIBAM [24] 2021 Real-World Crossroads Offline ✓ ✕ ✕ 33,092
DAIR-V2X-C [8] 2021 Real-World Intersections Offline ✓ ✓ ✓ 9,331
V2X-Seq (SPD) [9] 2023 Real-World Intersections Offline ✓ ✓ ✓ 15,000
OTVIC (Ours) 2024 Real-World Highway Online ✓ ✓ ✓ 15,045

Similarly, the cooperative perception models can be catego-
rized based on the fusion stage into early, intermediate, and
late fusion. Early fusion [18], [19] directly transforms raw
data and merges it to form a comprehensive perception. This
method tend to require a large communication bandwidth
due to the large scale of the raw data and is difficult to
operate in real-time. Intermediate fusion [6], [20], [21] fuses
the feature maps from both sides into a unified feature
representation. This method achieves a balance between
accuracy and transmission bandwidth. However, compression
and decompression of feature maps may result in some loss.
Additionally, due to significant temporal asynchrony and
spatial misalignment in highway scenarios, this may lead
to blurring and misalignment of the feature maps, which
can easily lead to performance degradation. Late fusion
combines the outputs of perception from infrastructure and
vehicle. Existing works often use non-maximum suppres-
sion (NMS) [22]. Although this method requires minimal
communication bandwidth, which can meet the requirements
of practical applications, the perception accuracy of this
method is relatively low. In a real-time system, we need
to consider issues such as delay, bandwidth limitations, and
communication noise, which are critical for the vehicle-to-
infrastructure cooperative perception system.

III. SYSTEM AND DATASET

In order to research vehicle-to-infrastructure cooperative
perception that can be practically applied, we establish
systems for infrastructure and vehicle in real world and
propose the OTVIC dataset. Here we describe how to collect
data in real-time and annotate the dataset. Finally, we present
a statistical analysis of the dataset. A visualization of the
systems and the dataset is depicted in Fig. 2.

A. Infrastructure System

The infrastructure perception system is comprised of 7
or 8 cameras, an edge computing device, a RSU, and a
cloud platform [7]. The cameras are mounted on 4 poles
with different pitch angles at a height of 10 to 20 meters
above the ground. These poles are installed at set intervals
in the middle of the highway or on the side. Typically,
the cameras on each pole are set to two different focal
lengths to cover both near-range and far-range vehicles. The
edge computing device supports the fusion perception of
seven or eight cameras, providing computational power for
BEV detection algorithms. By utilizing multi-sensor fusion,
the infrastructure can provide perception within an area of
800 by 80 meters. RSU is the communication hub with a
coverage range of 800 meters, transmissing message between

(a) Spatial data cover-
age

Start

Finish

(b) Route

Fig. 4. Map for the OTVIC dataset. In subfigure (a), colors indicate the
number of frames with ego vehicle poses within an 80m radius across all
scenes. Subfigure (b) shows the route of data collection in the real world.

the vehicles, other RSUs, and the cloud. It transmits data
to the OBU with frequencies from 5915 to 5925 MHz.
The cloud platform, supported by Alibaba Cloud, is used to
collect data from all roadside devices and conduct real-time
monitoring of the entire road.

B. Vehicle System

The Vehicle System is composed of the perception mod-
ule, the localization module, the communication module, and
a computer. A more detailed description of the hardware
configurations is depicted in the Table I. Specifically, we
carefully calibrate the extrinsics and intrinsics of every sen-
sor. The middleware framework we use is Robot Operating
System (ROS 1).

The perception module consists of four cameras and one
lidar as Fig. 3 shows. The four cameras are oriented towards
the front, rear, left, and right directions of the vehicle, achiev-
ing timestamp alignment among multiple cameras through
millisecond-level hardware synchronization. And the lidar is
mounted on the top of the vehicle.

The localization module consists of an Inertial Measure-
ment Unit (IMU) and a Global Positioning System (GPS).
They are mounted at the center position of the vehicle’s rear
axle. We employ an algorithm based on the Extended Kalman
Filter (EKF) for multi-sensor fusion to achieve accurate
localization. This approach uses data from IMU to predict
the vehicle’s location and applies GPS data to correct the
pose and motion estimates.

The communication module is the On-Board Unit (OBU)
for receiving information from roadside devices in real-time.
Additionally, the vehicle system achieves clock synchroniza-
tion with the infrastructure system through Network Time
Protocol (NTP).



(a) Number of different types of objects with
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Fig. 5. Analysis of OTVIC dataset. Subfigures (a), (b) and (c) reveal the statistics of the 3D bounding box annotations in our dataset. Subfigure (d)
shows the distribution of speeds for cars and trucks. Subfigure (e) presents the distribution of data size transmitted from RSU to OBU. And subfigure (f)
illustrates the statistics of delay from infrastructure to vehicle. This delay includes the inference time of infrastructure perception algorithm, the real-time
transmission latency from RSU to OBU and the time difference between the timestamp of the received roadside data and the lidar timestamp.

C. OTVIC Dataset

Data Collection. Our dataset is collected on highways
at speeds ranging from 70 to 110 km/h. When the ego-
vehicle drives into the detectable area of the roadside devices,
the perception data received from the roadside and the
sensor data from the ego-vehicle are saved to the local
hard drive of vehicle. Based on the lidar timestamps, the
saved vehicle sensor data are sampled at a frequency of
10Hz to obtain discrete frames. Each frame of vehicle is
matched with the closest frame of infrastructure which is
received in real-time before the current lidar timestamp.
After the data synchronization, we manually select 112
representative scenes, each encompassing several seconds in
duration. Fig. 4 shows spatial coverage across all scenes and
route in the real world. The dataset totals 15,045 frames.
Each frame includes images, point clouds, and localization
and motion information outputted by the localization module
from ego-vehicle, as well as the perception results from
infrastructure.

Data Annotation. In order to get vehicle-to-infrastructure
cooperative annotations, we convert 3D bounding boxes of
infrastructure into the ego-vehicle coordinate system and
fuse the infrastructure annotations and vehicle annotations.
Through multiple validation and refinement steps, expert
annotators make high-quality annotations for each frame
of the dataset. In particular, annotators comprehensively
annotate each of the four object classes in every image
and point cloud with its type, position, size, yaw angle,
3D bounding box, and ID. 4 categories include car, truck,
van, and bus. A total of 24,452 manually annotated vehicles,
including 10,823 cars, 12,750 trucks, 848 vans, and 31 buses.

Data Analysis. As Table II depicts, we compare the open
vehicle-to-infrastructure cooperative perception datasets with
OTVIC. Our dataset is collected in real-time from high-
speed scenarios in which infrastructure sends the results
of perception to vehicles for late fusion. Statistically, the
average speed for moving car and truck categories are
27.99 and 23.04 m/s. The packet loss rate for infrastructure
data is less than 1%. More statistics about the dataset are
illustrated in Fig. 5. In our dataset, the infrastructure data
is a vector with the dimensions (N, 8), including the type,
position, heading angle, velocity, acceleration, ID, and delay
for each object, where N is the number of objects. It has
converted from the coordinate system of the infrastructure
localization (GCJ02) to the ego-vehicle’s lidar coordinate
system. Additionally, we provide the ego-vehicle’s location
and motion information estimated by IMU and GPS, which is
a vector with 6 dimensions, including ego-vehicle’s position,
velocity, acceleration, yaw angle, and angular velocity. It has
also transformed to the lidar coordinate system.

Data Protection. Before the public release, we mask
license plates and faces to protect privacy because of local
laws and regulations. We also erase real geographic informa-
tion by transforming the position into a coordinate system of
a virtual world.

IV. METHOD

In this section, we propose an end-to-end multi-modality
fusion framework based on the OTVIC dataset as a baseline
method. We introduce the overall architecture of the fusion
framework in Fig. 6 and then show the details of LfFormer.
Finally, we demonstrate the loss functions for model training.
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Fig. 6. Architecture of Our Fusion Framework (LfFormer). The input is
the multi-view RGB images and point cloud from the ego-vehicle sensor,
as well as the perception results from the infrastructure. The output is 3D
object detection results in the ego-vehicle’s lidar coordinate system.

A. Overall Architecture

In order to addresses various challenges about collab-
orative perception between vehicle and infrastructure, we
propose a feature-result level fusion framework tailored for
real-world application scenarios. In this method, the roadside
unit provides result-level data and sends to the vehicle in real-
time. Given the smaller data volume of result-level data, it
meets the requirements of actual communication bandwidth.
However, infrastructure perception data has asynchronous
and heterogeneous characteristics, with inherent errors and
delays that necessitate spatial and temporal alignment and
compensation. Moreover, the vehicle fuses multi-modality
data from images and point clouds to obtain feature-level
data. Then, we use a novel network based on the Trans-
former [25] to achieve the feature-result level fusion, thereby
accomplishing the task of vehicle-to-infrastructure collabo-
rative perception. It consists of seven sub-modules: Camera
BEV Encoder, Lidar BEV Encoder, BEV Fusion, Temporal
Fusion, Query-based Fusion, Decoder, and Head.

B. LfFormer

Camera and Lidar BEV Encoder. We use ResNet [26]
for feature extraction from images to obtain 2D features. In-
spired by BEVFormer [27], it employs spatial cross-attention
to learn feature representations in the bird’s-eye view (BEV)
space. This method extracts spatial features from regions of
interest across camera views based on a predefined grid of
BEV queries. The Lidar BEV Encoder, using VoxelNet [28]
or PointPillars [29], converts the point clouds into Voxel or
Pillars features, which are further flatten into BEV feature.

BEV Fusion. We use a 3×3 convolution layer as the
BEV fusion module, which is designed to fuse BEV features
from both the camera and lidar effectively. It reduces the
BEV features of camera and lidar from the dimensions
[B,Ccamera + Clidar, H,W ] to [B,Cfusion, H,W ].

Temporal Fusion. In order to fuse historical BEV features
and learn rich information such as the motion characteristics
of detected objects, we use a temporal fusion module based
on temporal self-attention [27] to enhance the performance
of perception. It uses the ego-vehicle motion information to
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Fig. 7. The details of Query-based Fusion.

align the BEV features of the previous frame to the current
frame, and then fuses with the BEV features of the current
frame.

Query-based Fusion. To integrate roadside perception
data, we propose a query-based fusion module. The key
idea is to encode the anchors from infrastructure perception
into infrastructure queries after prediction and sampling. The
details of this module is illustrated in Fig. 7. First, we use
a historical sequence of infrastructure perception to predict
based on the equations of motion with constant acceleration,
and then anchors are sampled around the predicted positions.
Subsequently, these anchors are encoded into infrastructure
query using a MLP network. Finally, they are concatenated
with vehicle query which is predicted by heatmap [15].

Decoder. The decoder is a standard Transformer [25]
decoder which is composed of a self-attention layer, a cross-
attention layer, and a feed forward network. The fused BEV
features output by the temporal fusion module serve as the
key and value for the decoder, while the output from the
query-based fusion module is the decoder’s query.

Head. The head includes two branches: classification and
regression, which is composed of fully connected networks.
The output of classification branch is the confidence score of
being an object or backgroud. And the output of regression
branch is (x, y, z, l, w, h, θ), denoting the position, size,
and yaw angle of the bounding box. Additionally, this fu-
sion framework does not require non-maximum suppression
(NMS) post-processing.

C. Loss Function

In this fusion framework, we use the bipartite matching
between the predicted bounding boxes and ground truth
through the Hungarian algorithm [30]. We adopt a l1 loss
for regression of bounding boxes and a focal loss for object
classification. And the Gaussian focal loss function is used
for the prediction of the heatmap. Our total loss function con-
sists of a weighted sum of the regression loss, classification
loss, and heatmap loss:

Loss = ωrLr + ωcLc + ωhLh (1)

where ωr, ωc and ωh represent respectively the weight of
the regression loss, classification loss and heatmap loss.

V. EXPERIMENTS

In this section, we present a V2I 3D object detection
benchmark on our OTVIC dataset and analyze the ex-



TABLE III
3D OBJECT DETECTION BENCHMARK ON OTVIC.

Modality Fusion Model mAP0−40m mAP40−80m mAPoverall

Image

No Fusion Vehicle-only-C 0.518 0.228 0.421
Late Fusion NMS 0.527 0.249 0.432
Late Fusion TCLF [8] 0.530 0.261 0.439
Late Fusion LfFormer-C 0.531 0.309 0.458

Image & Pointcloud

No Fusion Vehicle-only 0.792 0.652 0.761
Late Fusion NMS 0.794 0.679 0.768
Late Fusion TCLF [8] 0.803 0.681 0.773
Late Fusion LfFormer (Ours) 0.807 0.702 0.784

perimental results quantitatively and qualitatively. Finally,
we conduct robustness and ablation studies on the OTVIC
dataset for the LfFormer model.

A. Benchmark Models

To reduce sensor costs, some autonomous vehicles are
equipped only with multiple cameras, omitting the use of
lidar. Here we compare the performance of different methods
based on two modalities.

Since the OTVIC dataset contains infrastructure perception
results rather than raw sensor data, we choose the late fusion
method, including Non-Maximum Suppression (NMS) and
Time Compensation Late Fusion (TCLF) [8] as our baselines.
In order to compare cooperative perception and single-
vehicle perception, we also investigate the model perfor-
mance without infrastructure perception, named vehicle-only.

Vehicle-only. We use the aforementioned fusion frame-
work (LfFormer) without infrastructure perception input as
the vehicle-only perception model. The model without the
lidar stream is called Vehicle-only-C. Here we choose BEV-
Former [27] as the camera stream and VoxelNet [28] as the
lidar stream.

Non-Maximum Suppression (NMS). We use vehicle-
only models to estimate the bounding boxes with confidence
scores. The perception results from infrastructure are pre-
dicted using a constant acceleration model. NMS is applied
to these proposals from both vehicle and infrastructure to
generate the final 3D object detection.

Time Compensation Late Fusion (TCLF). The TCLF
predicts and matches the bounding boxes across successive
infrastructure frames. For matched vehicles, it computes
their velocities directly. For unmatched vehicles, a learning-
based method is used to predict their velocities. And then
it approximates the positions of the current frame by linear
interpolation and fuses them with the perception results from
the ego-vehicle.

B. Metrics

The evaluation metric uses the mean Average Precision
(mAP) for all categories of objects across different distance
ranges. Similar to nuscenes [31], we calculate precision-
recall curve at different thresholds, defining a match by the
2D center distance d on the ground plane, rather than inter-
section over union (IOU) for each object category. Then, we
calculate the Average Precision (AP) as the normalized area
under the precision-recall curve, excluding operating points

(a) (b)

(c) (d)

Fig. 8. Average Precisio (AP) for each class at different distance thresholds.
Subfigure (a) and (b) compare the AP for car and truck using the Vehicle-
only-C and LfFormer-C models. Subfigure (c) and (d) compare the AP for
car and truck using the Vehicle-only and LfFormer models.

with recall or precision below 10% to reduce noise impact.
If no points meet this criterion, the AP for that category
is zero. Finally, we average over matching thresholds of
M = {0.5, 1, 2, 4} meters and summarize the AP values
across all categories to obtain the mAP. Assuming the set of
classes is N, the formula for computing mAP is as follows:

mAP =
1

|M||N|
∑
m∈M

∑
n∈N

APm,n (2)

C. Experiment Details

The dataset is divided into training, validation, and test
sets in a 7:1:2 ratio. Given the scarcity of vans and buses
in the dataset, the model training will only consider two
categories of objects: car and truck. The LfFormer model
training adopts a three-stage approach. We use the AdamW
optimizer to iteratively update the network parameters for
all stages. Firstly, we train the camera stream for 24 epochs
where the initial learning rate is set as 5e−5 and the weight
decay is set as 0.01. Secondly, we train the lidar stream
for 12 epochs. We set the learning rate to 6.25e−6 and
set the weight decay to 0.01. Finally, based on the camera
and lidar streams from the above two steps, our vehicle-
to-infrastructure collaborative perception model is trained
for 6 epochs with the initial learning rate 1.25e−4 and the
weight decay 0.05. Our proposed detection network is trained
on four Nvidia 3090 GPU with batch size 4. We set the
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Fig. 9. Visualization of detection results for no fusion methods. Green
boxes are ground truth, red boxes are the detection results of vehicle-only-
C or vehicle-only, and blue boxes are the results of infrastructure perception
with prediction.
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Fig. 10. Visualization of detection results for LfFormer-C and LfFormer.
Green and yellow boxes are ground truth and detection results respectively.

perceptual range to x ∈ [−80, 80] meters, y ∈ [−80, 80]
meters.

D. Benchmark Analysis

Quantitative evaluation. We compare the performance
of different methods and present a 3D object detection
benchmark for V2I cooperative 3D object detection across
three range intervals: 0-40 m, 40-80 m, and 0-80 m (overall).
In Table III, we can see that the detection performance of
cooperative perception is better than single-vehicle percep-
tion and our proposed fusion framework achieves the highest
mAP. Due to the short focal length of the camera, distant
objects in the image are small, resulting in a lower mAP for
camera-only methods. However, the infrastructure perception
data can improve the performance for the detection of distant
objects. The AP curves for each category at different distance
thresholds are shown in Fig. 8. Compared to single-vehicle
perception, our cooperative perception fusion framework has
a major increase of AP at distance thresholds of 1, 2, and 4.

Qualitative evaluation. Because it’s difficult to compare
differences in 3D bounding boxes within images, we project
the detection results into the lidar coordinate system for all
methods. Firstly, we illustrate the detection results of vehicle-
only in Fig. 9. Due to the effects of temporal asynchrony
and spatial misalignment, the precision of infrastructure

TABLE IV
ROBUSTNESS EXPERIMENTS UNDER DIFFERENT SCENARIOS ON THE

OTVIC DATASET FOR LFFORMER.

Scenarios Interval / Ratio mAP

Delay

0− 300 ms 0.786
300− 600 ms 0.785
600− 900 ms 0.778
≥ 900 ms 0.777

Packet dropout

25% 0.782
50% 0.779
75% 0.775
100% 0.761

perception is lower. However, it can detect all objects because
of a larger field of view for perception. Influenced by the
limited perception field of view for ego-vehicle, there are
problems of detecting distant objects, whereas the detection
accuracy for nearby objects is relatively high. Additionally,
vehicle-only method also struggle to detect objects that are
obscured, such as the oncoming vehicles obscured by the
median strip. And we also illustrate the detection results
of LfFormer-C and LfFormer in Fig. 10. With the help
of infrastructure perception, LfFormer-C has better perfor-
mance than Vehicle-only-C. Because of the input of point
clouds, LfFormer exhibits better performance than LfFormer-
C, achieving precise compensation and outstanding detection
results.

E. Robustness Analysis

To test the robustness of the model, we select two scenar-
ios: different online transmission delays and packet dropout
ratios for perception data received from the infrastructure, as
shown in Table IV.

Robustness to delay. In our dataset, the inference latency
of the roadside perception algorithm and the transmission de-
lay from infrastructure to vehicle are dynamically changing.
Here we calculate the performance at various delays: 0-300
ms, 300-600 ms, 600-900 ms, and over 900 ms. Because
we retrieve historical infrastructure perception and predict in
order to compensate for the delay in our fusion framework,
we can see that LfFormer still performs well even when the
delay is high.

Robustness to packet dropout. We simulate different
packet loss rates by randomly dropping the data received
every second from infrastructure. Here we simulate the
infrastructure perception packet dropout ratios of 25%, 50%,
75%, as well as 100% and evaluate the performance of our
fusion framework under each condition. The results indicate
that as the packet dropout ratio grows, there is a decline in
the model’s performance.

F. Ablation Study

We conduct ablation study on the OTVIC dataset for the
LfFormer model. Table V assesses the effectiveness of the
proposed operations, including prediction on infrastructure
perception and anchor sampling. We can see that: i) the
prediction module for infrastructure perception can effec-
tively compensate for the temporal asynchrony. ii) Sampling
anchors at the predicted locations can mitigate the impact of



TABLE V
ABLATION STUDY ON THE OTVIC DATASET FOR LFFORMER.

Prediction Sample mAP

✕ ✕ 0.766
✓ ✕ 0.773
✓ ✓ 0.784

spatial misalignments caused by inaccuracies in infrastruc-
ture perception or prediction.

VI. CONCLUSION

In this paper, we propose a dataset and a late fusion
framework based on the various issues and challenges of
vehicle-to-infrastructure cooperative perception in real-world
scenarios. This method effectively leverages the accuracy of
vehicle perception and the global perspective of infrastruc-
ture perception with small communication bandwidth, pro-
viding a safer and more reliable perception for autonomous
driving. It can be easily extended to Vehicle-to-Vehicle
(V2V) and Vehicle-to-Everything (V2X) collaborative sce-
narios for further research.
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