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一、个人申报
（一）基本情况【围绕《浙江工程师学院（浙江大学工程师学院）工程类专业学位研究生工

程师职称评审参考指标》，结合该专业类别(领域)工程师职称评审相关标准，举例说明】

1.对本专业基础理论知识和专业技术知识掌握情况(不少于200字)

本人掌握高等数学、线性代数、概率统计等工具，能建立电机控制微分方程模型；具备大学

物理电磁学理论基础，支撑电路设计与电磁兼容分析。并且，系统掌握电力系统分析（潮流

计算、短路电流仿真）、电机与拖动（异步电机矢量控制）、电力电子技术（IGBT/MOSFET

器件特性）等核心课程，完成基于Matlab/Simulink的“光伏逆变器并网谐波抑制”仿真研

究。跟踪新能源领域动态，研究氢燃料电池混合储能系统、SiC器件在电动汽车充电桩的应

用；熟悉数字孪生技术在智能电网故障预测中的实践案例。此外，对于行业标准，我掌握GB

/T 14549-93《电能质量公用电网谐波》、DL/T 5161-

2018《电气装置安装工程质量检验规范》，在课程设计中严格遵循IEC 

61850通信协议标准。并且，我分析过《电力业务许可证管理规定》《可再生能源法》对分

布式光伏电站建设的影响，熟悉欧盟CE认证流程。

2.工程实践的经历(不少于200字)

1.我曾参与浙江海上风电基地及电网系统规划研究， 

调研海上风电汇集送出系统的典型拓扑结构，研究多风电场电力汇集及送出关键技术，研究

多个海上风电场汇聚至陆上送出技术，提出风电基地送出系统规划方案。

2.我参与过浙江的大受端电力系统灵活调节能力挖掘关键技术等研究，研究电力系统动态平

衡机理，调研不同调节资源的动态平衡能力作用机理及路径，对极端场景下的灵活性资源调

节能力进行深度挖掘，并提出极端场景生成方法，以及在持续失衡扰动下的多类型非常态资

源进行深度挖掘。

3.我参与了国家重点研发计划——促进系统调节能力提升的城市级电-气-热-

储多能协同调控关键技术，并研究电-气-热-

储多能系统协同优化控制技术，经常参与线下、线上项目讨论会议，并前往吉林长春、松原

等地调研当地的综合能源情况，明确电、热、气资源的协同作用机理，挖掘极端场景下综合

能源系统的韧性提升策略，研究提高系统韧性的关键技术。

3.在实际工作中综合运用所学知识解决复杂工程问题的案例（不少于1000字)

近年来，极端沙尘暴对综合能源系统造成的严重危害引起了社会的广泛关注。极端沙尘暴由

于其影响范围广、破坏程度强，使得目前的能源系统难以针对性预防。其中，2017年春季新

疆发生大规模沙尘天气，风力发电设施的发电效率下降约20%，部分设备因积尘过多而停止

运行，甚至导致电力传输中断；2018年美国亚利桑那州发生大规模沙尘暴，导致太阳能发电

效率下降30%左右，超过一半地区的太阳能农场运营中断；2024年3月13日，蒙古国肯特、东

方等多省发生强沙尘暴灾害，部分地区出现大面积停电事故。极端灾害对能源系统带来了严

峻的挑战，同时造成了重大的经济损失和人员伤亡，严重威胁了人们的生活用电安全。如何

在极端灾害来临前做好预防并快速恢复能源供应成为研究的重点。

随着能源之间耦合程度的不断增强，以电力系统为主体融合气-

热能源的综合能源系统（Integrated Energy Systems, 

IES）的发展已成为能源转型和优化的必然趋势。长远来看，随着能源结构转型的加速和实

现“碳达峰、碳中和”目标的迫切需求，传统的单一能源电力系统正在逐步向IES转型。在

这过程中，电能将与天然气、热力等多种能源形式深度融合，最终构建以电力为核心的新型

能源体系。IES打破了传统电力、天然气、热能等能源形式独立规划和运行的模式，采用多
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能互补、供需互动为核心的创新技术架构[3]，使能源系统耦合更为紧密，提高能源的利用

效率。

IES的韧性是指IES对极端灾害的抗性、降低极端灾害对系统影响的规模及持续时间的能力。

IES韧性评估不仅可以量化系统在应对灾害时的性能，同时可以根据结果辨别系统薄弱环节

，合理进行资源优化调度，更有利于IES抵御极端灾害，减少灾后IES的负荷损失同时增强系

统的韧性。

在此背景下，本案例对极端沙尘暴下考虑随机扰动的综合能源系统韧性提升技术展开了研究

，主要工作如下：首先，构建综合能源系统模型，搭建仿真所用的实际系统算例；其次，研

究沙尘暴的移动轨迹，明确沙尘暴的时空分布特征。分析沙尘暴对综合能源系统的影响，建

立沙尘暴下系统的故障模型。对极端沙尘暴下的风光场景进行生成，并与传统场景生成方法

进行对比，验证所提方法的有效性，弥补数据样本的空缺；然后，基于随机动力学，对生成

的风光出力序列等沙尘暴下的随机扰动进行伊藤随机微分方程建模，采用极大似然估计法对

方程中的漂移系数和扩散系数进行最优求解；之后，通过电气热网的潮流方程，得出系统性

能水平的随机微分方程，构建韧性指标，并计算韧性指标的概率分布；最后，结合韧性概率

评估方法，考虑沙尘暴灾害的时空分布特征，优化系统中风光机组调整，结合储能调度与多

能系统能源协同，考虑灾前储热，提出沙尘暴下考虑随机扰动的综合能源系统韧性提升策略

，构建两阶段分布鲁棒优化模型并采用优化算法求解，确定最优策略，提高极端沙尘暴下综

合能源系统的韧性。
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（二）取得的业绩（代表作）【限填3项，须提交证明原件（包括发表的论文、出版的著作、专利

证书、获奖证书、科技项目立项文件或合同、企业证明等）供核实，并提供复印件一份】

1. 
公开成果代表作【论文发表、专利成果、软件著作权、标准规范与行业工法制定、著作编写、科技

成果获奖、学位论文等】

成果名称

成果类别 

[含论文、授权专利（含

发明专利申请）、软件著

作权、标准、工法、著作

、获奖、学位论文等]

发表时间/

授权或申

请时间等

刊物名称

/专利授权

或申请号等

本人

排名/

总人

数

备注

Probability 

Assessment of Power 

System Resilience 

Based on Stochastic 

Dynamics Under 

Sandstorms

会议论文
2024年11

月08日
IEEE EI2 

2024
1/4

EI会议收

录

      

      

2.其他代表作【主持或参与的课题研究项目、科技成果应用转化推广、企业技术难题解决方案、自

主研发设计的产品或样机、技术报告、设计图纸、软课题研究报告、可行性研究报告、规划设计方

案、施工或调试报告、工程实验、技术培训教材、推动行业发展中发挥的作用及取得的经济社会效

益等】
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Abstract—Frequent extreme sandstorm disasters have led to 

power system failures and significant losses, drawing widespread 

international attention. Considering the impact of stochastic 

disturbances is crucial for assessing system resilience. This paper 

proposes a resilience probabilistic assessment method based on 

stochastic dynamics specifically for extreme sandstorm events. 

First, the effects of sandstorms on various aspects of the power 

system are examined, and a system failure model is developed. 

Next, a fast generative adversarial network (Fast GAN) is 

introduced to extract relevant features from historical sandstorm 

disaster data, enabling the generation of extreme disaster 

scenarios. Then, the Itô process from stochastic dynamics is 

applied to describe the system’s stochastic disturbances, and 

resilience metrics are constructed to obtain the probabilistic 

distribution of system resilience indicators. Finally, a modified 

IEEE 14-bus system is used in a case study to validate the 

feasibility and effectiveness of the proposed method in generating 

extreme scenarios and assessing resilience probabilities. 

Keywords—extreme sandstorm disaster, resilience assessment, 

stochastic dynamics, Fast GAN. 

I. INTRODUCTION 

Large-scale development of renewable energy has become a 
key trend in the evolution of modern power systems. Sandstorm 
weather can cause immeasurable losses to power systems with a 
high share of renewable energy, often leading to system failures 
and triggering large-scale incidents. For instance, a major 
sandstorm in Arizona, USA, in 2018 resulted in a 30% reduction 
in solar power generation efficiency, causing most solar farms 
to halt operations. Additionally, on March 13, 2024, severe 
sandstorms affected multiple provinces in Mongolia, including 
Khentii and Dornod, resulting in widespread power outages in 
certain areas. Therefore, it is imperative to implement 
preventive measures in the power system to address the high-
risk, low-probability events associated with extreme weather 
disasters. 

Resilience of a power system refers to its ability to withstand 
extreme disasters and to recover and revitalize afterward [1]. To 
mitigate the losses caused by extreme disasters, accurate 
assessments of system resilience are essential. In this regard, 
researchers have proposed various assessment methods for 
system resilience. Ref. [2] introduced a resilience assessment 
framework for distribution networks under typhoon disasters; 
Ref. [3] presented a data-driven method for evaluating the 
resilience of urban distribution networks; Ref. [4] proposed a 
resilience assessment approach based on geographic 
information analysis; and Ref. [5] introduced a method for 
assessing system resilience in extreme disasters while 
considering cascading effects. The evaluation of power system 
resilience under extreme disasters has become a research hotspot. 
However, the aforementioned resilience assessment methods 
derive deterministic resilience indicators through simulations of 
extreme disaster scenarios. Given the uncertainty associated 
with extreme disasters, the resilience of the system may differ 
from the deterministic resilience assessments. Therefore, it is 
necessary to consider the impact of stochastic factors on the 
system during extreme disasters to achieve a comprehensive and 
accurate assessment of system resilience. 

Occurrence probability of extreme disasters is extremely low, 
and the limited historical data cannot encompass all possible 
events, leading to inaccuracies in resilience assessments. 
Traditional methods for generating extreme scenarios often 
employ techniques such as Monte Carlo sampling and k-means 
clustering. However, these methods primarily rely on historical 
data for clustering and sampling, and since extreme scenarios 
like severe sandstorms have relatively few historical data 
samples, the scenarios generated using traditional methods may 
exhibit randomness. With the continuous advancement of 
artificial intelligence, models such as machine learning and deep 
learning have shown promising results in data extraction and 
generation. 

This work is supported by State Grid Zhejiang Electric Power Co., Ltd. 

Science and Technology Project. (5211JY22000Z) 



 

 

The output of renewable energy and load can undergo 
significant fluctuations due to extreme disasters, exhibiting 
strong randomness. Stochastic dynamics serves as an important 
theoretical foundation for analyzing the evolutionary 
characteristics of stochastic dynamic systems. It employs 
stochastic differential equations to describe randomness, 
allowing for the characterization of probability distributions and 
temporal correlations associated with randomness. Analytical 
methods based on models can incorporate the randomness of 
wind and solar loads into the resilience assessment of power 
systems by utilizing appropriate stochastic models. 

The main contributions of this paper are as follows: First, the 
impacts of sandstorms on power systems are studied, and 
extreme scenarios are generated. A fast generative adversarial 
network (GAN) is employed to train historical wind speed and 
solar radiation data under extreme scenarios, yielding predicted 
ranges for wind speed and solar intensity, and modeling line 
failure scenarios. Second, based on stochastic dynamics, Itô 
stochastic differential equations are formulated for the predicted 
wind and solar load sequences, and the maximum likelihood 
estimation method is used to optimally solve the coefficients in 
the equations. Finally, a resilience probabilistic assessment 
method based on stochastic dynamics is proposed to calculate 
system performance levels, and a stochastic differential equation 
for resilience indicators is constructed to derive the probability 
distribution of these indicators. The effectiveness of this method 
is validated through a modified IEEE 14-bus case study. 

II. MODELING FAULT SCENARIOS IN POWER SYSTEMS UNDER 

SEVERE SANDSTORMS 

A. The Impact of Sandstorms on Solar Power Output 

The formula for solar power output is as follows: 

 ( ),
,
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Where pvP  represents the solar power output (MW); pvY  is 

the rated capacity of the photovoltaic array under standard test 

conditions; pvf  is the photovoltaic derating factor; TG  is the 

solar radiation intensity received by the photovoltaic array 
(kW/m²); ,T STCG is the incident light intensity under standard test 

conditions; cT is the surface temperature of the photovoltaic 

array (℃); ,c STCT is the surface temperature of the photovoltaic 

array under standard test conditions (℃); P is the temperature 

correction coefficient. Among these, sandstorms primarily 
affect the solar radiation intensity received by the photovoltaic 
panels. When sandstorm conditions occur, the concentration of 
dust particles in the atmosphere increases significantly, leading 
to attenuation of direct solar radiation. 

B. Impact of Sandstorms on Wind Power Output 

The formula for the actual output of the wind turbine is as 
follows: 

 30.5WP Av =  (2) 

In the equation, WP  represents output of wind turbine,  is 

air density, A denotes area of  turbine blades, v represents wind 

speed,  is the efficiency of the wind turbine. 

The template is used to format your paper and style the text. 
All margins, column widths, line spaces, and text fonts are 
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proportionately more than is customary. This measurement and 
others are deliberate, using specifications that anticipate your 
paper as one part of the entire proceedings, and not as an 
independent document. Please do not revise any of the current 
designations. The relationship between the output power of the 
wind turbine and wind speed during operation is described by 
the following equation: 
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Where WP  represents rated power of wind turbine,

in n out,v v v，  denote the cut-in wind speed, rated wind speed, 

and cut-out wind speed respectively. 

C. Generation of Wind and Solar Sequences Based on Fast 

GAN 

Fast Generative Adversarial Networks (FastGAN) is an 
improved algorithm of generative adversarial networks. The 
specific implementation principle is as shown in Fig 1 below [6]. 

 

Fig. 1. Basic principle of generative adversarial networks 

The given sample datas  real( )f t  are used as the training set 

input. Generator D creates a dataset in the same format as the 
real data provided by the training set and adds noise to generate  

fake samples fake( )f t . Both datasets are input into discriminator 

D, which outputs the probabilities of the data being from the fake 
samples or the real samples. Then the learned data features are 
returned to the generator G to simulate the generation of a 
sample set that matches the distribution of  real datas. 

Building on this foundation, FastGAN improves generator 
by adding an adaptive feature pooling module that incorporates 
features from discriminator, thereby reducing the generator's 
reliance on large-scale datasets. Meanwhile, discriminator 
introduces a multi-scale discrimination mechanism to enhance 
the efficiency of judgment and generation. 

Based on the above methods, wind speed and solar radiation 
time series under sandstorm conditions are input as the training 



 

 

set into FastGAN. By adjusting relevant parameters of the model, 
a sample set of wind and solar sequences under sandstorms is 
generated. The wind and solar power outputs are then calculated 
using the formulas from Sections 2.1 and 2.2. 

D. Modeling of Line Faults 

Under severe sandstorm disasters, the force exerted by 
strong winds on transmission lines increases. When the force on 
the lines exceeds their resistance level, it can lead to line 
breakage. Generally, the failure model of lines under strong 
winds is as follows [7]: 

 fault
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v V
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Where faultP  represents probabilities of  transmission line 

failures, V  is maximum wind resistance speed, when actual 

wind speed v  is less than  V , the failure probability of the line 

is zero.When 2v V , line will definitely fail. For wind speeds  

between these two thresholds, the failure rate of line follows 
(4).Based on this failure model, failure rates of all lines in the 
system under strong sandstorm conditions are calculated. 
Additionally, using system entropy theory [8], the model with 
the highest occurrence probability is selected as the failure 
scenario. 

III. MODEL  OF SYSTEM RESILIENCE ASSESSMENT  

A. Resilience Assessment Indicator System 

Under extreme weather conditions, power systems often face 
the threat of sandstorms. Fig 2 illustrates a schematic 
representation of the state changes in the power system 
following the impacts of extreme weather. 

 

Fig. 2. Schematic diagram of system resilience curve 

In Fig 2, 30 1 2, , .S S S S  represent the system's normal state, 

resistance phase, maintenance phase, and recovery phase  

respectively. 0L  denoting system's initial performance level. 

When the system is subjected to extreme disasters, its resilience 
is assessed using traditional methods, as illustrated by the curve 

1l . The system resilience indicators are constructed using the 

"trapezoidal area method" [9] , as shown in the following 
formula: 

 
2

0

0( ( ))
t

t
R L L d = −  (5) 

R represents system resilience indicator, 0t  is the moment 

when the disaster occurs, 2t  is the time when system returns to 

normal state, ( )L   is system's performance level at time  . 

Due to uncertainty of intensity of extreme disasters and 
random disturbances of failure scenarios, system performance 
level fluctuates at various time points, with its evolving state 
interval indicated by the orange area in Fig.2. The assessment 
interval of system resilience indicators can be calculated based 
on different confidence intervals. 

B. Stochastic Process Analysis Based on Random Dynamics 

Stochastic processes with disturbances in power system can 
be represented by the following Itô process model [10]: 

 ( ) ( ( )) ( ( )) tdX t X t dt X t dW = +  (6) 

Where tW  is Wiener process, which is a type of stochastic 

process with standard properties. This stochastic differential 
equation quantitatively describes the relationship between the 

standard Wiener process tW  and the stochastic input to be 

modeled ( )X t ; ( ( ))u X t  is system drift coefficient, 

representing a trend of random variable moving towards its 

expected value; ( ( ))X t  is the system diffusion coefficient, 

indicating the influence of the randomness of ( )X t  on  

randomness of process. In this paper, ( )X t  represents load and 

renewable energy inputs with random disturbances. 

To estimate system drift term   and diffusion term  , the 

maximum likelihood estimation method can be employed [11] . 
Assuming there is a set of historical data 

(0), (1), ..., ( )oo oX X X t ,introduce likelihood parameter  , 

allowing (6) to be expressed as follows: 

 ( ) ( ( ); ) ( ( ); ) tdX t X t dt X t dW   = +  (7) 

Where ( ( ); )X t  , ( ( ); )X t   are the parameterized drift 

and diffusion terms respectively. The goal of maximum 
likelihood is to minimize the following negative log conditional 
probability: 

 min log Pr{ (2), ..., ( ) | (0)}(1),o o o oF X X t XX = −  (8) 

Where F  is the likelihood value of objective function. 

(0)oX  represents initial state of system. To solve this objective 

function, the independence of increments in the Itô process can 
be utilized, yielding: 

  
1

0
)log Pr ( 1) (

T
o o

t
XF t X t

−

=
+= −  ∣  (9) 

Since in power systems, loads and renewable energy inputs 
are generally in discrete form, (7) can be expressed as: 

 ( ) ( ) Δ( ) ( ); Δ ( ;( 1 )) tX X t X t t X t Wt    = + ++  (10) 

tW  follows a normal distribution (0, )N tI , I  means 

Variance. Substituting into (9) yields: 



 

 

 
1 12

2
0 0

1
min ( 1) ( ) Δ log

2

T T
o o

t t
F X t X t t 



− −

= =

 =  + − − + 
 

(11) 

The optimal parameters can be obtained from (11) using 
numerical methods. 

C. Method of Resilience Probability Assessment 

In Section 3.2, stochastic inputs with disturbances have been 
described using Itô stochastic process. Further, power system 
network is considered to calculate the values of resilience 
indicators. 

According to DC power flow equation, it can be derived that: 

 

j

i ij j

i

iP B 


=  (12) 

Where iP  represents injected power at node i , ijB  is 

imaginary part of node admittance matrix, ij  is phase angle 

difference of the voltages at the two ends of the branch ij. To 
calculate line transmission power: 

 =l lP B AXP  (13) 

Where lP  represents branch flow matrix, lB  is branch 

admittance diagonal matrix, A  is network incidence matrix, and 
X is inverse of node admittance matrix. P  is vector of injected 

power at nodes. 

Let = lC B AX , because P  is vector of injected power at 

nodes, which contains random disturbances. It can be expressed 
in discrete form as an Itô stochastic differential equation: 

  = lP C P  (14) 

Express injected power P  as an Itô process: 

  
  

  
 

=  
 t

dt
dP

dW
   (15) 

Where   and   represent system drift vector and diffusion 

vector respectively. 

Let    =D   , [   ]= tt dt dW , Substituting into (14) 

yields: 

 = T
ldP CDt  (16) 

Since the branch flow will be injected into each node, then: 

 =il ldP HdP  (17) 

Assuming the system has N nodes and M branches, ilP

represents power flowing into node i  from  other branches, and 

H  is elementary transformation matrix of size N M . Let S  

be the net load(i.e., the difference between power input to node 
and node's load), then: 

 = +ildS dP dP  (18) 

Substituting (16) and (17) into (18) yields: 

 ( )= + T
dS HCD D t  (19) 

When the system is operating normally, available resources 
exceed load demand, and there are no faults in the lines, the 
system is in power balance, 0=S .When 0S , it indicates 

that the system cannot meet the load demand, resulting in a loss 
of load, which reflects a decline in the system's performance 
level and can be reflected in system resilience curve. To 
calculate the system performance level at time t : 

 

0

0( ) ( ) ( )

t

L t L t dS d = +   (20) 

Thus, calculation formula for system resilience indicator is: 

 

2

0 0

( )

t t

t

R dS d dt = −   (21) 

When integrating (21), an initial state (0)S  is required. In 

this study, the moment immediately following the occurrence of 
a sandstorm disaster is used as initial state input. For the 
calculation of initial state, the objective function is set to 
minimize the decline in system performance level. Conventional 
constraints, such as unit output, ramp rates, and line transmission, 
are taken into account for optimization and solution. 

IV. CASE STUDY  

This example uses improved "IEEE 14" node system as a 
case study. Thermal power units are configured at nodes 1, 2, 
and 3, a wind power unit is configured at node 6, and a 
photovoltaic unit is configured at node 8, with installed 
capacities of 320 MW, 140 MW, 100 MW, 100 MW, and 100 
MW respectively. The maximum total load of this system is 700 
MW. The case study is illustrated in Fig 3: 

 

Fig. 3. Improved IEEE 14-node case 

In this scenario, it is assumed that a strong sandstorm begins 
at 4t =  and lasts for 24 hours, during which it moves from the 

southwestern of  node system towards the southeastern. The 
simulation time step for the experiment is set to 1 hour. 

A. Wind and Solar Sequence Generation Based on FastGAN 

Taking a specific area in northeastern China as a 
hypothetical disaster occurrence point, local wind and solar data 
during strong sandstorms are collected as training samples. 
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These samples are input into the FastGAN, and the generated 
solar irradiance and wind speed curves are shown in Fig 4: 

 

(a) 

 

(b) 

Fig. 4. Solar irradiance and wind speed curves generated by FastGAN 

From  Fig.4, it can be observed that the datas generated by 
FastGAN model are similar to the historical datas. The historical 
data sequences are all contained within the range of generated 
samples. 

B. Generation of Line Fault Scenarios 

Based on the line fault probability formula and considering 
the impact of sandstorm scenarios on the lines, the fault rates of 
each line in the system are shown in Fig 5: 

 

Fig. 5. Fault rates of each line 

According to the system entropy theory, the fault scenario 
with highest entropy value is selected as the typical scenario, 
with the disconnected line numbers being: 1, 5, 6, 10, 12, 14, 19. 

C. Resilience Probability Assessment of  Power System 

Calculate the Itô stochastic differential equations for initial 
state of the system and wind,solar and load at the time of disaster 
occurrence, and use the maximum likelihood estimation method 
to compute drift and diffusion coefficients for wind, solar, and 
load nodes. The drift coefficient and diffusion coefficient of 
wind and solar node are calculated using the maximum 
likelihood estimation method as follows: 

TABLE I.      Drift and Diffusion Coefficients of Wind and Solar Power 

Node type \ Coefficient μ σ 

Wind turbine node 6 0.204 2.02 

Photovoltaic node 8 0.103 2.864 

These coefficients are then substituted into  resilience 
probability assessment method proposed in Section 3.3 of this 
paper to derive system resilience curve and resilience 
probability assessment interval, as shown in the Fig 6: 

 

Fig. 6. System resilience curve  

In Fig 6, the blue shaded area represents system performance 
assessment interval calculated using the method proposed in this 
paper. According to (5), the system resilience indicator value 
obtained using the Monte Carlo sampling method is 
R=8320.8 MWh. By employing the method proposed in this 
paper, the drift and diffusion coefficients corresponding to the 

system variable S  are obtained as follows: 4.37, 23.12 = = , 

and the probability distribution of system's resilience indicator 
is shown in Fig 7: 



 

 

 

(a) 

 

(b) 

Fig. 7. System resilience probability distribution 

From Fig 7(a), the expected value of system resilience 

calculated using the proposed method is R =8460.2MWh, 
which is consistent with the resilience value obtained from the 
Monte Carlo sampling method. From Fig 7(b), it can be 
observed that there is a 99% probability that the resilience 
indicator of power system does not exceed 10693.5 MWh. 

V. CONCLUSIONS 

This paper proposes a resilience probability assessment 
method for power systems based on random dynamics and 
FastGAN. By using FastGAN to generate extreme disaster 
scenarios and introducing Itô process from random dynamics, 
the resilience probability distribution of system is calculated 
using analytical methods. The conclusions are as follows: 

1) The FastGAN method can effectively generate extreme 
scenario sequences, creating potential extreme scenarios that are 
similar to historical data using a small amount of historical 
information. This provides accurate foundational conditions for 
resilience assessment of the system. 

2) The application of random dynamics theory in power 
systems can accurately describe the impact of stochastic 
disturbances on the system, effectively capturing the influence 
trends of different disturbances on system behavior. 

3) The resilience probability assessment method based on 
random dynamics can accurately characterize the system's 
performance under varying levels of sandstorm disasters and 
provide the probability distribution of resilience indicators. 
Compared to the traditional Monte Carlo sampling method, this 
analytical approach is faster and more convenient, offering 
decision-makers a more comprehensive reference for enhancing 
system resilience. 

REFERENCES 

[1] Y. Wang, C. Chen, J. Wang and R. Baldick, “Research on Resilience of 
Power Systems Under Natural Disasters—A Review,” in IEEE 
Transactions on Power Systems, vol. 31, no. 2, pp. 1604-1613, March 
2016. 

[2] Y. Wang, “A Resilience Assessment Framework for Distribution Systems 
Under Typhoon Disasters,” in IEEE Access, vol. 9, pp. 155224-155233, 
2021. 

[3] K. Li, “Resilience Assessment of Urban Distribution Network Under 
Heavy Rain: A Knowledge- Informed Data-Driven Approach,” in IEEE 
Access, vol. 11, pp. 63741-63750, 2023. 

[4] M. Abdelmalak, J. Cox, S. Ericson, E. Hotchkiss and M. Benidris, 
“Quantitative Resilience-Based Assessment Framework Using Eagle-I 
power Outage Data,” in IEEE Access, vol. 11, pp. 7682-7697, 2023. 

[5] Y. Wang, Y. Yang and Q. Xu, “Integrated Model for Resilience 
Evaluation of Power-Gas Systems Under Windstorms", in CSEE Journal 
of Power and Energy Systems,” vol. 10, no. 4, pp. 1427-1440, July 2024. 

[6] Zhao Yu, Li Yan, Sun Yanping, “Research on GAN-based Sample 
Expansion Method for Earthquake Personnel Deaths,” in Journal of 
Catastrophology, vol. 39,no. 4, pp. 40-46, 2024. 

[7] Yang Yihao, Tang Wenhu, Liu Yang, “Quantitative resilience assessment 
for power transmission systems under typhoon weather,” in IEEE Access, 
vol. 6, pp. 40747-40756, 2018. 

[8] Jin Bingjie，Zhang Buhan，Yao Jianguo, “Large-scale power system 
components vulnerability assessment based on entropy,” in Automation 
of Electric Power Systems,vol. 39, no. 5, pp. 61-68, 2015. 

[9] W. Huang, X. Zhang, K. Li, N. Zhang, G. Strbac and C. Kang, “Resilience 
Oriented Planning of Urban Multi-Energy Systems With Generalized 
Energy Storage Sources,” in IEEE Transactions on Power Systems, vol. 
37, no. 4, pp. 2906-2918, 2022. 

[10] D. Apostolopoulou, A. D. Domínguez-García and P. W. Sauer, “An 
Assessment of the Impact of Uncertainty on Automatic Generation 
Control Systems,” in IEEE Transactions on Power Systems, vol. 31, no. 
4, pp. 2657-2665, July 2016. 

[11] Li, Chenxu, “Maximum-Likelihood Estimation for Diffusion Processes 
via Closed-Form Density Expansions,” in The Annals of Statistics, vol. 41, 
no. 3, pp. 1350-1380, 2013. 

 




