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Abstract—Frequent extreme sandstorm disasters have led to
power system failures and significant losses, drawing widespread
international attention. Considering the impact of stochastic
disturbances is crucial for assessing system resilience. This paper
proposes a resilience probabilistic assessment method based on
stochastic dynamics specifically for extreme sandstorm events.
First, the effects of sandstorms on various aspects of the power
system are examined, and a system failure model is developed.
Next, a fast generative adversarial network (Fast GAN) is
introduced to extract relevant features from historical sandstorm
disaster data, enabling the generation of extreme disaster
scenarios. Then, the It& process from stochastic dynamics is
applied to describe the system’s stochastic disturbances, and
resilience metrics are constructed to obtain the probabilistic
distribution of system resilience indicators. Finally, a modified
IEEE 14-bus system is used in a case study to validate the
feasibility and effectiveness of the proposed method in generating
extreme scenarios and assessing resilience probabilities.

Keywords—extreme sandstorm disaster, resilience assessment,
stochastic dynamics, Fast GAN.

I. INTRODUCTION

Large-scale development of renewable energy has become a
key trend in the evolution of modern power systems. Sandstorm
weather can cause immeasurable losses to power systems with a
high share of renewable energy, often leading to system failures
and triggering large-scale incidents. For instance, a major
sandstorm in Arizona, USA, in 2018 resulted in a 30% reduction
in solar power generation efficiency, causing most solar farms
to halt operations. Additionally, on March 13, 2024, severe
sandstorms affected multiple provinces in Mongolia, including
Khentii and Dornod, resulting in widespread power outages in
certain areas. Therefore, it is imperative to implement
preventive measures in the power system to address the high-
risk, low-probability events associated with extreme weather
disasters.
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Resilience of a power system refers to its ability to withstand
extreme disasters and to recover and revitalize afterward [1]. To
mitigate the losses caused by extreme disasters, accurate
assessments of system resilience are essential. In this regard,
researchers have proposed various assessment methods for
system resilience. Ref. [2] introduced a resilience assessment
framework for distribution networks under typhoon disasters;
Ref. [3] presented a data-driven method for evaluating the
resilience of urban distribution networks; Ref. [4] proposed a
resilience assessment approach based on geographic
information analysis; and Ref. [5] introduced a method for
assessing system resilience in extreme disasters while
considering cascading effects. The evaluation of power system
resilience under extreme disasters has become a research hotspot.
However, the aforementioned resilience assessment methods
derive deterministic resilience indicators through simulations of
extreme disaster scenarios. Given the uncertainty associated
with extreme disasters, the resilience of the system may differ
from the deterministic resilience assessments. Therefore, it is
necessary to consider the impact of stochastic factors on the
system during extreme disasters to achieve a comprehensive and
accurate assessment of system resilience.

Occurrence probability of extreme disasters is extremely low,
and the limited historical data cannot encompass all possible
events, leading to inaccuracies in resilience assessments.
Traditional methods for generating extreme scenarios often
employ techniques such as Monte Carlo sampling and k-means
clustering. However, these methods primarily rely on historical
data for clustering and sampling, and since extreme scenarios
like severe sandstorms have relatively few historical data
samples, the scenarios generated using traditional methods may
exhibit randomness. With the continuous advancement of
artificial intelligence, models such as machine learning and deep
learning have shown promising results in data extraction and
generation.



The output of renewable energy and load can undergo
significant fluctuations due to extreme disasters, exhibiting
strong randomness. Stochastic dynamics serves as an important
theoretical foundation for analyzing the evolutionary
characteristics of stochastic dynamic systems. It employs
stochastic differential equations to describe randomness,
allowing for the characterization of probability distributions and
temporal correlations associated with randomness. Analytical
methods based on models can incorporate the randomness of
wind and solar loads into the resilience assessment of power
systems by utilizing appropriate stochastic models.

The main contributions of this paper are as follows: First, the
impacts of sandstorms on power systems are studied, and
extreme scenarios are generated. A fast generative adversarial
network (GAN) is employed to train historical wind speed and
solar radiation data under extreme scenarios, yielding predicted
ranges for wind speed and solar intensity, and modeling line
failure scenarios. Second, based on stochastic dynamics, It&
stochastic differential equations are formulated for the predicted
wind and solar load sequences, and the maximum likelihood
estimation method is used to optimally solve the coefficients in
the equations. Finally, a resilience probabilistic assessment
method based on stochastic dynamics is proposed to calculate
system performance levels, and a stochastic differential equation
for resilience indicators is constructed to derive the probability
distribution of these indicators. The effectiveness of this method
is validated through a modified IEEE 14-bus case study.

Il. MODELING FAULT SCENARIOS IN POWER SYSTEMS UNDER
SEVERE SANDSTORMS
A. The Impact of Sandstorms on Solar Power Output
The formula for solar power output is as follows:

G;
va = va fpv {— |:l+ap (Tc _Tc,STC ):| 1)
C:"T,STC

Where PB,, represents the solar power output (MW);Y,, is
the rated capacity of the photovoltaic array under standard test
conditions; f,, is the photovoltaic derating factor; G; is the
solar radiation intensity received by the photovoltaic array
(KWI/mZ; G; ¢ is the incident light intensity under standard test
conditions; T, is the surface temperature of the photovoltaic
array (°C); T, gr¢ is the surface temperature of the photovoltaic
array under standard test conditions (°C); o is the temperature

correction coefficient. Among these, sandstorms primarily
affect the solar radiation intensity received by the photovoltaic
panels. When sandstorm conditions occur, the concentration of
dust particles in the atmosphere increases significantly, leading
to attenuation of direct solar radiation.

B. Impact of Sandstorms on Wind Power Output

The formula for the actual output of the wind turbine is as
follows:

Ry =0.5pAV’n )

In the equation, R, represents output of wind turbine, p is

air density, A denotes area of turbine blades, Vv represents wind
speed, 7 is the efficiency of the wind turbine.

The template is used to format your paper and style the text.
All margins, column widths, line spaces, and text fonts are
prescribed; please do not alter them. You may note peculiarities.
For example, the head margin in this template measures
proportionately more than is customary. This measurement and
others are deliberate, using specifications that anticipate your
paper as one part of the entire proceedings, and not as an
independent document. Please do not revise any of the current
designations. The relationship between the output power of the
wind turbine and wind speed during operation is described by
the following equation:

0, V <V, OV >V,
V-V
Ry =¢Py —, Vi, <V<V, (3)
Vh —Vin
Py, Vy SV SV,

Where R, represents rated power of wind turbine,
Vins Vg, Vo, denote the cut-in wind speed, rated wind speed,
and cut-out wind speed respectively.

C. Generation of Wind and Solar Sequences Based on Fast

GAN

Fast Generative Adversarial Networks (FastGAN) is an
improved algorithm of generative adversarial networks. The
specific implementation principle is as shown in Fig 1 below [6].

Fig. 1. Basic principle of generative adversarial networks

The given sample datas f (t),, are used as the training set

input. Generator D creates a dataset in the same format as the
real data provided by the training set and adds noise to generate
fake samples f (t)¢,. . Both datasets are input into discriminator

D, which outputs the probabilities of the data being from the fake
samples or the real samples. Then the learned data features are
returned to the generator G to simulate the generation of a
sample set that matches the distribution of real datas.

Building on this foundation, FastGAN improves generator
by adding an adaptive feature pooling module that incorporates
features from discriminator, thereby reducing the generator's
reliance on large-scale datasets. Meanwhile, discriminator
introduces a multi-scale discrimination mechanism to enhance
the efficiency of judgment and generation.

Based on the above methods, wind speed and solar radiation
time series under sandstorm conditions are input as the training



setinto FastGAN. By adjusting relevant parameters of the model,
a sample set of wind and solar sequences under sandstorms is
generated. The wind and solar power outputs are then calculated
using the formulas from Sections 2.1 and 2.2.

D. Modeling of Line Faults

Under severe sandstorm disasters, the force exerted by
strong winds on transmission lines increases. When the force on
the lines exceeds their resistance level, it can lead to line
breakage. Generally, the failure model of lines under strong
winds is as follows [7]:

0, vV
Prouir =1exp[0.6931(v-V)/V]-1 V <v< 2V 4
1, v>2V

Where P.,; represents probabilities of transmission line

failures, V is maximum wind resistance speed, when actual
wind speed v is less than V , the failure probability of the line
is zero.When v > 2V , line will definitely fail. For wind speeds
between these two thresholds, the failure rate of line follows
(4).Based on this failure model, failure rates of all lines in the
system under strong sandstorm conditions are calculated.
Additionally, using system entropy theory [8], the model with
the highest occurrence probability is selected as the failure
scenario.

I1l. MODEL OF SYSTEM RESILIENCE ASSESSMENT

A. Resilience Assessment Indicator System

Under extreme weather conditions, power systems often face
the threat of sandstorms. Fig 2 illustrates a schematic
representation of the state changes in the power system
following the impacts of extreme weather.

Resilience curve of system without
system per- 4 —_
Y p considering disturbances

formance L(t) system resilience interval

disaster accur
considering disturbances

N
restored fully
L

»

Fig. 2. Schematic diagram of system resilience curve

In Fig 2, Sy,S;,5,.5; represent the system's normal state,
resistance phase, maintenance phase, and recovery phase
respectively. L, denoting system's initial performance level.

When the system is subjected to extreme disasters, its resilience
is assessed using traditional methods, as illustrated by the curve
l, . The system resilience indicators are constructed using the
“"trapezoidal area method" [9] , as shown in the following
formula:

R=" (L~ LE)dr ©)

R represents system resilience indicator, t, is the moment
when the disaster occurs, t, is the time when system returns to
normal state, L(z) is system's performance level at time 7 .

Due to uncertainty of intensity of extreme disasters and
random disturbances of failure scenarios, system performance
level fluctuates at various time points, with its evolving state
interval indicated by the orange area in Fig.2. The assessment
interval of system resilience indicators can be calculated based
on different confidence intervals.

B. Stochastic Process Analysis Based on Random Dynamics

Stochastic processes with disturbances in power system can
be represented by the following It&process model [10]:

dX (1) = (X (D)dt + o (X (1))dW, (6)

Where W, is Wiener process, which is a type of stochastic

process with standard properties. This stochastic differential
equation quantitatively describes the relationship between the
standard Wiener process W, and the stochastic input to be

modeled X (t) ; u(X(t)) is system drift coefficient,

representing a trend of random variable moving towards its
expected value; o(X(t)) is the system diffusion coefficient,

indicating the influence of the randomness of X(t) on
randomness of process. In this paper, X(t) represents load and
renewable energy inputs with random disturbances.

To estimate system drift term x4 and diffusion term o, the

maximum likelihood estimation method can be employed [11] .
Assuming there is a set of historical data

X°(0), X°(@),..., X°(t) ,introduce likelihood parameter & ,
allowing (6) to be expressed as follows:

dX (t) = (X (t); £)dt + o (X (); £)dW, (7

Where u(X(t);€), o(X(t);¢) are the parameterized drift

and diffusion terms respectively. The goal of maximum
likelihood is to minimize the following negative log conditional
probability:

min, F =—log Pr{X°(®), X°(2),..., X°(®)| X°(0)} (8)

Where F is the likelihood value of objective function.
X°(0) represents initial state of system. To solve this objective

function, the independence of increments in the 1t&process can
be utilized, yielding:

T-1
F:—ZIogPr{XO(t+l)| x°(t)} 9)
t=0

Since in power systems, loads and renewable energy inputs
are generally in discrete form, (7) can be expressed as:
X(t+1) = X (&) +u(X();e)At+o (X(t); )W, (10)
W,, follows a normal distribution N(O,Atl), I means
Variance. Substituting into (9) yields:



. 1 T- 2 T-1
min F = —— zl[x°(t+1)—x°(t)—um] +Ylogo (11)
20° t=0 t=0
The optimal parameters can be obtained from (11) using
numerical methods.
C. Method of Resilience Probability Assessment

In Section 3.2, stochastic inputs with disturbances have been
described using It stochastic process. Further, power system
network is considered to calculate the values of resilience
indicators.

According to DC power flow equation, it can be derived that:
R =2 Byf (12)

jei
is

Where B represents injected power at node i, B;

imaginary part of node admittance matrix, ¢; is phase angle

difference of the voltages at the two ends of the branch ij. To
calculate line transmission power:

P, = B, AXP (13)

Where P, represents branch flow matrix, B, is branch

admittance diagonal matrix, A is network incidence matrix, and
X is inverse of node admittance matrix. P is vector of injected
power at nodes.

Let C = B, AX, because P is vector of injected power at

nodes, which contains random disturbances. It can be expressed
in discrete form as an It&stochastic differential equation:

AP, =CAP (14)
Express injected power P as an It&process:
e | I 15)
“ 9w,

Where g and @ represent system drift vector and diffusion
vector respectively.

Let D=[@ o], t=[dt dW,], Substituting into (14)
yields:

dP, =CDt' (16)

Since the branch flow will be injected into each node, then:

dP, = HdP, 17)

Assuming the system has N nodes and M branches, P,

represents power flowing into node i from other branches, and
H is elementary transformation matrix of size NxM . Let S
be the net load(i.e., the difference between power input to node
and node’s load), then:

Substituting (16) and (17) into (18) yields:

dS = (HCD + D)t" (19)

When the system is operating normally, available resources
exceed load demand, and there are no faults in the lines, the
system is in power balance, S =0 .When S <0, it indicates
that the system cannot meet the load demand, resulting in a loss
of load, which reflects a decline in the system's performance
level and can be reflected in system resilience curve. To
calculate the system performance level at time t :

t
L(t) = Ly () + I dS(r)dz (20)
0

Thus, calculation formula for system resilience indicator is:

ot

R= J' I —dS(z)dzdt 1)
t 0

When integrating (21), an initial state S(0) is required. In

this study, the moment immediately following the occurrence of
a sandstorm disaster is used as initial state input. For the
calculation of initial state, the objective function is set to
minimize the decline in system performance level. Conventional
constraints, such as unit output, ramp rates, and line transmission,
are taken into account for optimization and solution.

IV. CASE STUDY

This example uses improved "IEEE 14" node system as a
case study. Thermal power units are configured at nodes 1, 2,
and 3, a wind power unit is configured at node 6, and a
photovoltaic unit is configured at node 8, with installed
capacities of 320 MW, 140 MW, 100 MW, 100 MW, and 100
MW respectively. The maximum total load of this system is 700
MW. The case study is illustrated in Fig 3:

Fig. 3. Improved IEEE 14-node case

In this scenario, it is assumed that a strong sandstorm begins
at t =4 and lasts for 24 hours, during which it moves from the
southwestern of node system towards the southeastern. The
simulation time step for the experiment is set to 1 hour.

A. Wind and Solar Sequence Generation Based on FastGAN

Taking a specific area in northeastern China as a
hypothetical disaster occurrence point, local wind and solar data
during strong sandstorms are collected as training samples.



These samples are input into the FastGAN, and the generated
solar irradiance and wind speed curves are shown in Fig 4:

Light intensity under

1000 normal condition

= Actual light series

800 = = pgenerated light series

Generated range of
light intensity
600

GHI

400

10 L'S Zb
time (hours)

@

== Wind speed under normal condition
= Actual wind speed
== penerated wind speed

Generated range of wind speed

wind speed(m/s)

0 5 10 s 20
time (hours)

(b)
Fig. 4. Solar irradiance and wind speed curves generated by FastGAN
From Fig.4, it can be observed that the datas generated by

FastGAN model are similar to the historical datas. The historical

data sequences are all contained within the range of generated
samples.

B. Generation of Line Fault Scenarios

Based on the line fault probability formula and considering
the impact of sandstorm scenarios on the lines, the fault rates of
each line in the system are shown in Fig 5:

0.8 1

probability
o
(=2}

=
'S

0.2

0.0-
01234567 8910111213141516171819
line number

Fig. 5. Fault rates of each line

According to the system entropy theory, the fault scenario
with highest entropy value is selected as the typical scenario,
with the disconnected line numbers being: 1, 5, 6, 10, 12, 14, 19.

C. Resilience Probability Assessment of Power System

Calculate the It&stochastic differential equations for initial
state of the system and wind,solar and load at the time of disaster
occurrence, and use the maximum likelihood estimation method
to compute drift and diffusion coefficients for wind, solar, and
load nodes. The drift coefficient and diffusion coefficient of
wind and solar node are calculated using the maximum
likelihood estimation method as follows:

TABLE I.  Drift and Diffusion Coefficients of Wind and Solar Power
Node type \ Coefficient i (o]
Wind turbine node 6 0.204 2.02
Photovoltaic node 8 0.103 2.864
These coefficients are then substituted into resilience

probability assessment method proposed in Section 3.3 of this
paper to derive system resilience curve and resilience
probability assessment interval, as shown in the Fig 6:
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Fig. 6. System resilience curve

In Fig 6, the blue shaded area represents system performance
assessment interval calculated using the method proposed in this
paper. According to (5), the system resilience indicator value
obtained using the Monte Carlo sampling method is
R=8320.8 MWh. By employing the method proposed in this
paper, the drift and diffusion coefficients corresponding to the
system variable S are obtained as follows: ;= 4.37,0 = 23.12,

and the probability distribution of system’s resilience indicator
is shown in Fig 7:
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Fig. 7. System resilience probability distribution

From Fig 7(a), the expected value of system resilience

calculated using the proposed method is R =8460.2MWh,
which is consistent with the resilience value obtained from the
Monte Carlo sampling method. From Fig 7(b), it can be
observed that there is a 99% probability that the resilience
indicator of power system does not exceed 10693.5 MWh.

V. CONCLUSIONS

This paper proposes a resilience probability assessment
method for power systems based on random dynamics and
FastGAN. By using FastGAN to generate extreme disaster
scenarios and introducing It&process from random dynamics,
the resilience probability distribution of system is calculated
using analytical methods. The conclusions are as follows:

1) The FastGAN method can effectively generate extreme
scenario sequences, creating potential extreme scenarios that are
similar to historical data using a small amount of historical
information. This provides accurate foundational conditions for
resilience assessment of the system.

2) The application of random dynamics theory in power
systems can accurately describe the impact of stochastic
disturbances on the system, effectively capturing the influence
trends of different disturbances on system behavior.

3) The resilience probability assessment method based on
random dynamics can accurately characterize the system's
performance under varying levels of sandstorm disasters and
provide the probability distribution of resilience indicators.
Compared to the traditional Monte Carlo sampling method, this
analytical approach is faster and more convenient, offering
decision-makers a more comprehensive reference for enhancing
system resilience.
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