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Abstract: This paper aims to address the challenge of pose estimation for texture-less objects under conditions of stacking,
occlusion, and complex backgrounds. The proposed method, called Yolo-S, consists of two parts: a pre-estimation network based
on Yolov8 backbone and a key point post-refinement network based on Graph Neural Network. The first part uses off-the-shelf
detectors result as inputs (e.g. MaskRCNN) and outputs the pre-estimate keypoints at the pixel coordinates. The second part
encodes the roughly estimated keypoints and the priori knowledge of the object's CAD model, uses a graph neural network to
intergrate feature and predict the final keypoints. PNP method is used to obtain the object's pose. The main advantage of Yolo-S
is that is has a prior knowledge embedded GNN model for estimating the pose of texture-less objects, which greatly improves
prediction quality and accuracy and achieves zero-shot sim-to-real model transfer. Experimental results on the LINEMOD
dataset demonstrate the effectiveness of the proposed method and its significant competitiveness with other state-of-the-art

methods.

Key Words: Pose Estimation, Yolov8, GNN, Texture-less object

1 Introduction

Pose estimation technology, which means recovering the
rotation and translation of an object in the 3-D Euclidean
space, is an active research area in computer vision with
significant importance for many real-world applications,
such as robotic grasping, autonomous driving and unit
assembly.

Texture-less objects are very common in industrial
products and components, like plastic pipes. Although many
pose estimation methods have achieved promising results in
recent years, the featureless nature of texture-less objects
still poses a great challenge to them due to their heavy
reliance on surface features[1].

The existing methods to handle this task can be classified
as classical approaches and data-driven approaches [2].
Classical approaches first extract features from image data
and establish the correspondence between an object image
and the model to realize instance recognition and pose
estimation. However, the reliance on handcrafted features
and fixed matching procedures have limited their
applicability in situations with complex backgrounds,
occlusions, or texture-less objects that are difficult to extract
features from.

Date-driven approaches have greatly improved the
performance of pose estimation algorithms. On the basis of
different data type, this method can be divided into RGB
image based and RGB-D image-based methods. Although
RGB-D image-based methods have achieved good
performance in general scenarios with the assistance of
depth information, the depth sensor has some limitations.
Current consumer-level RGB-D cameras cannot handle
non-Lambertian materials well, such as metal parts and
glossy plastic, which often produce fragmented depth

"This work is supported by the Open Research Project of the State Key
Laboratory of Industrial Control Technology, Zhejiang University, China
(No.ICT2023B49).
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images. Therefore, it is desirable to rely on only RGB

images for 6D pose estimation even if it is more challenging.

Although many RGB based methods [3] [4] have work well

on public benchmarks (e.g., LINEMOD [5]) of ordinary

objects, they have limitations in predicting texture-less
object due to the difficulty of feature extraction.

To address this problem, we extend Yolov8 to keypoints
detection and use GNN to integrate a priori knowledge of
object shape into the model. Thanks to the good
performance of Yolov8 and the addition of shape priori, the
proposed method, called Yolo-S (which stands for Yolov§
and shape prior), achieves significant accuracy on
texture-free pipes using only RGB images. In summary, this
work has the following contributions:

a) The Yolov8 network was extended to add a keypoints
detection head to pre-estimate the projection of the 3D
bounding box of a texture-less object on the 2D image
plane. A GNN model is designed to encode the rough
estimation of keypoints and priori knowledge of target
object into node and edge and refine the keypoints
prediction based on the integrated features.

b) A loss function based on the projection error of CAD
model is designed to calculate the pixel distance
deviation between the projected image in ground truth
pose and predicted pose.

c¢) The proposed method obtains good results on a
self-designed texture-less pipes dataset and achieves
zero-shot sim-to-real model transfer by means of
extensive data augmentation. In addition, the method
also obtains good accuracy on the public dataset
LINEMOD [5].

2 Related work

This section introduces methods for 6D pose estimation
based on RGB images, which can be divided into the
following four categories.
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Image-only Estimating Methods: These methods use
only RGB images and perform feature extraction based on a
CNN network, which in turn regresses the 6D position of the
target object, or predicts the keypoints of the target object
and calculates the target position using PNP or RANSAC
methods. SSD-6D [6] extends the popular single-shot
multibox detector (SSD [7]) object detection framework to
cover the full 6-D pose space by adding a translation and
orientation regression module. BB8 [3] uses a CNN as a
keypoint detector to output the two-dimensional coordinates
of the eight corners of the object's three-dimensional
bounding box. These methods may be effective on objects
with rich textures, but it is difficult to achieve ideal accuracy
on texture-less target objects that are hard to extract features
from.

Template Matching-Based Methods: Pose estimation
methods using template matching discretize the cartesian
space into a set of pre-defined templates. These templates,
labeled with 6D poses, are created offline using the target
object's CAD model. During online detection, the template
most similar to the input RGB image is chosen as the
estimated pose. A typical representative of this kind of
method is the LINEMOD [5], which uses multimodal
features (RGB image s and depth image) for template
matching. This method relies on manually created features
and is very time-consuming. AAE [8] proposes a 3D object
orientation estimation method based on autoencoders.
Instead of explicitly learning the mapping from input images
to object poses, it provides an implicit representation of
object orientation, defined as the orientation of samples in
the latent space. Multipath-AEE [9] extends AAE to
multi-object scenes using a single encoder-multi-decoder
network structure. This approach achieves good results in
pose estimation, but it is slow in computation and the
process of creating the template library is also cumbersome.

Prior Knowledge-Based Methods: Despite the rich 2D
features provided by RGB images, such as keypoint
locations, determining the 6D pose of an object solely from
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2D information presents significant challenges, particularly
in scenarios involving textureless objects where keypoint
extraction is difficult. Incorporating prior knowledge of the

object model can enhance model robustness in these
complex scenarios. ContourPose [1] uses the object contour
as a geometric prior and designs an additional contour
decoder implicitly constrains the prediction of keypoints,
improving the accuracy of keypoint prediction. PSGMN [10]
also uses GNN to integrate the prior knowledge of object
CAD models to pose estimation network. The difference
from our work lies in that PSGMN uses GNN as feature
extractors for the CAD model, while our work uses GNN as
an optimizer for the already extracted features. Compared
with image-only method, pose estimation methods that
incorporate a priori knowledge of the object are more
suitable for industrial products with fixed geometric
features.

3 Proposed approach

3.1 The Overall Structure of Yolo-S

The proposed pose estimation network Yolo-S includes a
keypoints pre-estimation module based on Yolov§, and a
key point post processing module based on GNN and shape
prior. Yolo-S uses the result of arbitrary segmentation
network as input, employing the Yolov8 architecture for
backbone and neck for feature extraction and multi-scale
feature fusion. Subsequently, through a keypoints head, it
approximates the initial projection of the object's 3D
bounding box onto the 2D image plane. In the
post-refinement network based on the priori knowledge of
the object, we encode the object model and the preliminary
prediction results of the keypoints as node and edge, and use
the GNN network to intergrate the node and edge features,
and the fully-connected network is used to perform the
post-refinement of the keypoints based on the intergrated
features. The overall structure of model is shown in Fig. 1.
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Fig. 1: The overall architecture of Yolo-S
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Fig. 2: The architecture of GNN Refine Net

3.2 Pre Estimation Module

The keypoints pre-estimation module is designed based
on the extension of Yolov8 network. Yolov8 is a work in
progress in 2D object detection but cannot be directly used
in 6D bit-pose estimation scenarios, where more 2D points
need to be predicted to compute the object's pose in
Cartesian space. Therefore, our work enhances Yolov8 by
integrating a decoupled keypoints prediction head, which
accomplishes the task of predicting the projection of an
object's 3D bounding box on the 2D image plane.

The pre-estimation module consists of backbone, neck,
decoupled head and predict module. Backbone is designed
with reference to the CSPDarknet53 architecture, where
each layer down samples the feature maps using a 3x3
convolution with a stride of 2, and introduces cross-stage
partial connections in the network using a CSP (cross-stage
partial connections) structure. Neck uses FPN [11] (Feature
Pyramid Network) and PAN [12] (Path Aggregation
Network) for multiscale features fusing, where FPN fuses
detailed features at lower levels with semantic features at
higher levels through up-sampling and down-sampling
operations to obtain a more comprehensive and enriched
feature representation. PAN is used to aggregate these
features across different layers of the network. Such
structure can better utilize the multi-scale information, thus
improving the accuracy and stability of detection. The input
RGB image is normalized to a standard size of 640x640x%3.
After Backbone's down sample layer and CSP layer, three
feature layers of different scales are obtained, which are
future fused by Neck to finally obtain three feature layers for
regression and classification tasks.

The prediction of bounding box, category and keypoints
are performed by three decoupled heads consisting of two
ConvBlock and one 1x1 convolution. The prediction results
of bounding box and category are directly calculated
through the NMS function. The keypoints prediction head
outputs a tensor of size [b,n,Y, ,w,xh], where n is the
number of keypoints and (w;,, %) are the size of multi-level
feature map.

3.3 GNN Refine Net

Graph Neural Network (GNN) are a type of neural
network designed to process data that is represented as
graphs. Graphs consist of nodes and edges and adjacency
matrix. Each node represents an entity, and each edge
represents a relationship between two nodes. Both nodes
and edges can have features or attributes. Adjacency matrix
is a way to describe whether there is an edge between any

pair of these nodes. For a graph with N nodes, its adjacency
matrix is an NXN matrix represented as M, v
M ;v (i,j) =1 if node i connects to node j, otherwise
My (i/)=0.

In the GNN post-processing network, the features of the n
keypoints output from the previous stage are encoded as

node ¥:
7/1) :{71’],},1“2’.“7/13"}
}/Pi =(x, ) ie[Ln]

where (x,,y,) is the initial estimated pixel coordinate of the
projection of the object's 3D bounding box on the 2D image
plane. The distance relationship between nodes is then
encoded as an edge f based on the object model:

§=1&, 1if M (i, ))=1

& =47,
where d(y,,7;) represents the Euclidean distance between
node 7, and 7,, then the task of GNN Refine Net can be

summarised as the regression of point features, where ¢
represents the final output of node feature:

(1

@)

Y’ =Net(y".,() )

The GNN Refine Net consists of two modules and the
structure is shown in Fig. 2. The first module, the features of
connected nodes and edges are merged. The first module
consists of two fully connected layers that integrates the
features of connected nodes and edges, and the second phase
consists of three fully connected layers that integrates the
information between different nodes and predict the final

node features 7 .

3.4 Loss Function

Node Loss: We combine the 3D projection error of the
CAD model and the 2D pixel distances of the key points to
train the GNN correction network. The 2D pixel distances is
represented as:

l n .
LZD node — ;Z (%G _}/zg )2 (4)
i=1

where 7° represents the node feature predicted by GNN
refine net, which means the projection of the 3D bounding
box in the 2D image plane. ¥* is the ground truth label. The
3D projection error is represented as:

Lyyy = %ZMMG P)-7* P} ()

where M is the set of point clouds in the CAD model of
object, P =(x,,y,,z,) ie (1,M) is a point in M, & is the
camera projection matrix, which consists of the camera
internal parameters and external parameters [R,t], where
the internal parameters is known in advance, and [R,?] is
obtained by the PNP algorithm based on the predicted
keypoints.

Total Loss: The total loss of the network is the sum of
node loss, classification loss and box loss.
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L = ﬂlerde + ﬂ‘ZLclx + A‘}Lbox
Low=KLp, wtA=K)L,

‘node ~ D proj

L, == [(1=&)log(l-c)~¢log(c)]

gt
L =1-100+P® o ©)

‘box W

4 w¥ W,
v = — (arctan —-—arctan —)
T h* h

v
a=—
1-IoU +v

where 4,,4,,4,,k,a are the gain coefficients for different
component. ¢ and ¢ are the ground truth and predicted
values of the object categories, and IOU(Intersection over
Union) denotes overlap ratio between the ground truth
bounding box and the predicted bounding box. w*,h*,w,h
denotes the width and height of ground truth bounding box
and predicted bounding box, p(b,b%) denotes the
Euclidean distance between the centroid of the predicted
box and ground truth, and C represents the length of the
diagonal of the smallest enclosing rectangle encompassing
both the predicted box and the ground truth box.

4 Datasets and Model Training

4.1 Datasets

Texture-less pipe datasets: We use robot simulation
software Coppeliasim to render the texture-less pipe dataset.
2000 initial images of different types of pipes are obtained
by setting different camera positions in Cartesian space, and
then the dataset size is expanded by ten times by data
augmentation methods such as color shifting, adding
random noise and occlusion.

LINEMOD datasets: To compare with other state-of-art
pose estimation methods, we validated Yolo-S on the public
dataset LINEMODJ[4] which contains images of 13
texture-less objects in cluttered scenes. Each object's subset
consists of approximately 1200 RGB-D images. We also
expanded the dataset using data augmentation methods
mentioned before.

GNN dataset: In order to speed up the convergence rate
of the network, we provide and large amount of synthetic
data for training the GNN refinement network to ensure that
the network is able to learn the connection information
between the key points of the objects. A 10k-sized ground
truth value of the node and edge feature is obtained based on
the rendering of a real object model, and then the training
data is obtained by adding Gaussian noise to the ground
truth.

4.2 Training Details

The training of the network is divided into two stages. In
the first phase the GNN post-refinement network is trained
using the GNN dataset, and in the second phase the overall
network is trained end-to-end based on the pre-trained
weights of GNN refinement network weights Yolov8
pre-estimation network using RGB image as inputs. Our
algorithm is implemented using the Pytorch framework and
in the first stage the learning rate is adaptively adjusted

using the Adam (Adaptive Moment Estimation) optimizer
with an initial learning rate of 0.005, a batch size of 128 and
an overall training epoch of 50. The SGD (Stochastic
Gradient Descent) optimizer was used in the second phase to
train the network end-to-end holistically with an initial
learning rate of 0.001, batch size of 8, and overall training
epoch of 100. 85% of all the data was divided into training
set and 15% was used as a test set, and the configurations of
the software and hardware devices for the actual training
and testing process are shown in the Table 1.

Table 1: Configuration of Software and Hardware

Item Configuration
Operating system Ubuntu 18.04
CPU 1 x Intel Core 17-12700KF
GPU 1 x NVIDIA GeForce GTX
3080Ti
Operating system CUDA 11.1
Framework Pytorch 1.9.1

5 Experiments and Results

In this section, we analyze the performance of Yolo-S
using our own fittings dataset, and in order to demonstrate
the necessity of the GNN post-refinement network, we
compared the proposed Yolo-S with and without GNN
module. Additionally, we transfer the network that trained
on digitally rendered data to real-world environments
without using any real samples, and have achieved good
results.

In order to compare with other similar pose estimation
methods, we also validated Yolo-S on the LINEMOD
dataset.

5.1 Evaluation Metrics

We evaluate our method using a commonly used metric in
pose estimation: the average 3D distance of the model point
(ADD) metric. This metric computes the mean distance
between two transformed model points using the estimated
pose and the ground truth pose. It is claimed that the
estimated pose is correct if the distance is less than 10% of
the model diameter. The ADD metric is defined as follows:

ADD = %ZKM “(Rx+ £)—(Rx+ f)” )
where m is the number of model points and x represents
3D points. The ground truth and estimated pose are
represented as [R|¢] and [R |£] respectively.

For objects with rotational symmetry whose pose is
ambiguous, the ADD-S metric is used to calculate the
average 3D distance of all nearest neighbor pairs in the two
point sets after transformation. ADD-S is defined as
follows:

ADD—S=%Z m'AI}“(Rxl +1)—(Rx, +f)” (8)

xeM xe

5.2 Evaluation Results

Texture-less pipes dataset: The visualization results of
the position estimation of Yolo-S on the texture-less pipes
are shown in Fig. 3. In order to validate the generalization
performance of the network, instead of using the
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Coppeliasim synthetic data used to train the network, we
used images rendered by BlenderProc for model validation,
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which were not learned by the network.

Fig. 3: Texture-less pipe estimation result based on BlenderProc rendered image.
Line 1: BlenderProc rendered image with proposed Yolo-S
Line 2: Yolo-S without GNN model.
Line 3: Real image with GNN model.

Line 1 of Fig. 3 shows the results of the proposed Yolo-S
on BlenderProc rendered images, line 2 shows the
prediction results based on Yolo-S without the GNN
post-refinement module, and line 3 shows the results of the
Yolo-S on real images with a complex background and
stacked target objects. It can be clearly seen that the success
rate of network prediction with the addition of the GNN
module was 100%, while the prediction results without the
GNN module are much unstable. The comparison of line 1
and line 2 shows that the addition of the GNN module
greatly improves the accuracy of the prediction network and
has an advantage in the case of a small amount of occlusion
of the target object. Line 3 shows the prediction results of
real images with difficulties such as occlusion, stacking, and
complex background, and the difficulty of prediction is
incremented from left to right. It is worth noting that the
network without the GNN post-refinement module cannot
be used in the real image.

Table 2 compares the network prediction results with and
without the GNN module using ADD accuracy on
BlenderProc's test set. From Table 2, it can be seen that the
GNN module greatly improves the prediction performance
of the model for texture-less pipes. These results strongly
demonstrate the necessity of the GNN module.

Table 2: Comparison w and w/o GNN Module

Method ADD metric
w 70.1
w/o 11.2

LINEMOD dataset: In order to compare more
intuitively with other same type of pose estimation methods
and to demonstrate the advantages of proposed Yolo-S, we
also validate the proposed method on the public dataset
LINEMOD. Fig. 4 shows the visualization results of Yolo-S
on the LINEMOD dataset, where the predicted bounding
box (blue) is very close to the ground truth bounding box
(green), which implies that the estimation results are
accurate. Table 3 shows the comparison of Yolo-S with
other state-of-the-art methods, where BB8[2] uses CNN as a
keypoints detector to output the 2D coordinates of the eight
corner points of the 3D bounding box of the target object,
and we adopt the optimization method of BBS, i.e.,
regressing the keypoints on the heatmap to make the
comparison. AAE[7] uses an enhanced autoencoder to
encode the object rotations into the latent space, given an
image, AAE predicts only the rotation of the object, while
the translation of the object is estimated using a 2-D
bounding box. As can be seen from the table, the average
ADD accuracy of Yolo-S exceeds that of the optimized BB8
method and the AEE method using depth information.

DDCLS"24

Authorized licensed use limited to: Zhejiang University. Downloaded Jrzg?l}gust 16,2024 at 02:24:59 UTC from IEEE Xplore. Restrictions apply.



Table 3: Comparison in Terms of ADD Metric

Method/Object | BB8[2] AAE[7] OURS
Ape 40.4 244 55.3
Benchvise 91.8 89.1 92.9
Cam 55.7 82.1 89.5
Can 64.1 70.8 68.9
Cat 62.6 72.2 61.6
Driller 74.4 449 93.9
Duck 443 54.6 60.8
Eggbox 57.8 96.6 61.7
Glue 41.2 94.2 88.6
Hole puncher 67.2 513 473
Iron 84.7 71.9 96.5
Lamp 76.5 86.3 90.8
Phone 54.0 86.2 80.97
Average 62.7 71.6 76.05

6 Conclusion

In this paper, we propose an end-to-end position
estimation network based on Yolov8 feature extractor and
the priori knowledge of the object model called Yolo-S.
GNN network is used to encode the pre-estimation of
keypoints extracted by Yolov8 and the a priori knowledge of
the object model as node and edge, and fuses the features of
node the edge for keypoints post-refinement. The overall
model is able to predict the projection of the 3D bounding
box of target object on the 2D image plane and subsequently
compute the object's 6D pose based on PNP algorithm. To
improve the prediction accuracy, we combine the 3D
projection error of the CAD model and the 2D pixel distance
of the keypoints to design the loss function for keypoint
prediction. Yolo-S demonstrates excellent pose estimation

performance on texture-less pipes, and is able to handle the
case of complex backgrounds, object stacking and occlusion,
and achieves zero-shot sim-to-real model migration. What’s
more, Yolo-S shows superior performance over other
methods with similar ideas on the LINEMOD dataset.
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