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LiDAR-Inertial 3D SLAM with Plane Constraint for Multi-story
Building

Jiashi Zhang!'*, Yuzhu Su®*, Chengyang Zhang', Jianxiang Jin"-3, Jun Wu!-3, Rong Xiong!, Qiuguo Zhu!>37

Abstract— The ubiquitous planes and structural consistency
are the most apparent features of indoor multi-story buildings
compared with outdoor environments. In this paper, we propose
a tightly coupled LiDAR-Inertial 3D SLAM framework with
plane features for the multi-story building. The framework we
proposed is mainly composed of three parts: tightly coupled
LiDAR-Inertial odometry, extraction of structural represen-
tative planes, and factor graph optimization. By building a
local map and inertial measurement unit (IMU) pre-integration,
we get LiDAR scan-to-local-map matching and IMU mea-
surements, respectively. Minimize the joint cost function to
obtain the LiDAR-Inertial odometry information. Once a new
keyframe is added to the graph, all the planes of this keyframe
that can represent structural features are extracted to find the
constraint between different poses and stories. A keyframe-
based factor graph is conducted with the constraint of planes,
and LiDAR-Inertial odometry for keyframe poses refinement.
The experimental results show that our algorithm has outstand-
ing performance in accuracy compared with the state-of-the-art
algorithms.

I. INTRODUCTION

With the development of environmental perception capa-
bilities, the scenarios can be explored are expanding from 2D
to 3D by drone and legged robot. Accurate state estimation
and mapping are the basic premises for applying robots
toward to the real world. Facing indoor environments, espe-
cially multi-story buildings, the robot must obtain a globally
consistent pose estimation on different floors. Otherwise the
point clouds of different floors will overlap or be deflected,
which cannot be used for autonomous navigation of robots.
How to make the robot obtain globally consistent pose
estimation on different floors is the focus and difficulty of
SLAM in multi-story buildings.

A 3D LiDAR based on scanning mechanism has the
advantages of textureless, invariant to the illumination, and
broad horizontal of view (FOV) of 360°, which is generally
used in indoor environments[1], [2]. Under normal circum-
stances, LiDAR-aided SLAM mainly uses extracting corner
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Fig. 1. Schematic diagram of SRP. On the left are actual scenes from
different stories. Different colors represent different SRPs, and the same
color represents the same plane. On the right is the SRP extracted from
the LiDAR point cloud. Using the same SRP to construct constraints on
different stories can eliminate accumulated errors.

points and surf points method [3], [4], Normal Distributions
Transform (NDT)[5] scan matching, or floor extraction[6]
methods to achieve SLAM for a single floor. Although
many algorithms implement SLAM by extracting planes in
indoor environments, most only use plane constraints in
the odometry part and achieve accurate SLAM algorithms
by finding the scan-to-scan plane correspondence. These
algorithms can achieve good results in scenes with a single
indoor floor or a relatively small number of floors. However,
when the robot explores from bottom to top in a multi-story
building, the existing algorithms cannot achieve accurate
state estimation on the robot’s 6-DOF, due to long-distance
and loop closure does not work. In the multi-story SLAM,
due to the consistency of structure between different floors,
some planes on different floors can represent the same
building structure. When the robot observes the same plane
on different stories, it can correct the current pose. Here
we call these planes structural representative planes (SRP).
Fig. 1 shows an example of SRP, where the same SRP is
displayed in the same color on different stories. Finding the
correspondence between SRP within the scope is the key to
achieving low-drift SLAM in multi-story scenes.

This paper uses SRPs to build global constraints in differ-
ent stories. Our framework has three parts: (1) tightly coupled
LiDAR-Inertial odometry, (2) extraction of representative
planes of the structure, and (3) factor graph optimization.
The odometry is obtained by jointly optimizing the relative
pose of the scan-to-local-map and the IMU pre-integration
measurements. According to the odometry information, all



the SRP will be extracted as candidates for the global plane
constraint once a new keyframe is selected. Transform the
global SRP to the keyframe coordinate system, and construct
the global constraint relationship between keyframes accord-
ing to the direction of planes’ normals and the distance to the
coordinate origin. Add odometry information and constraint
information from planes to the factor graph, perform global
optimization, and get the accurate pose of each keyframe.

The main contributions of this paper is summarized as
follows:

« We propose the method of finding and constructing the
global constraints of SRP in the multi-story blocks to
achieve accurate 6-DOF state estimation of the robot
when the loop closure is not possible.

« We propose a tightly coupled LiDAR-Inertial, keyframe-
based SLAM framework to get the dense 3D point cloud
maps of multi-story blocks.

« We validate the algorithm using the data collected from
Velodyne VLP-16 and Xsens Mti-300 mounted on a
real quadruped robot (Jueying Robot). Compared with
the method without SRP, better results are obtained.

II. RELATED WORK

LiDAR Inertial odometry 3D LiDAR and IMU have been
widely used in SLAM, both indoors and outdoors. The fusion
methods of LiDAR and IMU are mainly divided into two
categories: loosely coupled and tightly coupled. In the field
of loosely coupled, LOAM [3] is a classic loosely coupled
framework. It uses the orientation calculated by the IMU
de-skew the point cloud and as prior information in the
optimization process. The same method is also applied to its
variants LeGO-LOAM [7]. LIO-Mapping [8] implemented
LiDAR-Inertial tightly coupled algorithm by optimizing the
cost function that includes both LiDAR and inertial measure-
ments. However, the optimization process is carried out in a
sliding window, so the time-consuming calculations make
it impossible to maintain real-time performance. In their
follow-up work, R-LINS [9], they use iterated-ESKF for the
first time to achieve LiDAR-Inertial tightly coupled fusion
and propose an iterated Kalman filter [10] to reduce wrong
matchings in each iteration. A tightly coupled framework
based on iterated Kalman filter is presented in [11], similar
to R-LINS. An incremental kd-tree data structure is adopted
to ensure cumulative updates and dynamic balance to ensure
fast and robust LIDAR mapping. LIO-SAM [4] proposed by
Shan T optimizes the measurements of LiDAR and IMU by
factor graph, and at the same time, estimates the bias of the
IMU.

SLAM related to plane features Whether in vision-
based SLAM or LiDAR-based SLAM, plane-related features
are widely used to improve state estimation accuracy. In
LiDAR-based SLAM, LOAM [3] proposed extracting feature
points from planar surface patches and sharp edges based
on curvature calculation and improved the iterative closest
point (ICP) [12] method based on the extracted feature points
demonstrating the superb LiIDAR odometry effect. Koide K
[6] realize SLAM in a large-scale environment by detecting

the ground, assuming that the indoor environment is a single
flat floor. But this assumption is not applicable in all scenes
and can only limit the height on the z-axis. LIPS [13] extract
the plane in the three-axis direction of the point cloud, not
only the ground plane, and combine the plane and IMU
measurements in a graph-based framework. At the same
time, the closets point (CP) is used to represent the plane
to solve the singularity. 7-LSAM, an indoor environment
SLAM system using planes as landmarks, is proposed by
Zhou L [14]. They adopt plane adjustment (PA) as the back-
end to optimize plane parameters and poses of keyframes,
similar to bundle adjustment (BA) in visual SLAM. Their
subsequent work [15] extended this by using first-order
Taylor expansion to replace the Levenberg Marquardt (LM)
[16] method. To achieve faster computational speed, they
define the integrated cost matrix (ICM) for each plane and
achieve outstanding SLAM effects in a single-layer indoor
environment. All of the above frameworks use a single
LiDAR or a loosely coupled method of LiDAR and IMU
as the front-end. On the contrary, we use a tightly coupled
LiDAR-Inertial method as the front-end, which can obtain a
more accurate prior pose of the keyframe, making it more
precise when looking for the corresponding between the
planes.

III. LIDAR-INERTIAL ODOMETRY

The Lidar-Inertial odometry, which is adapted from [8],
maintains two sliding windows for building local map and
optimizing states. Although it cannot run in real time, it
can calculate an accurate pose transformation between two
keyframes.

A. IMU Pre-integration

The LiDAR and IMU reference frames at time ¢ are noted
L, and I, respectively. The state X;}/ of IMU to be estimated
in the world frame W and the extrinsic matrix T} from IMU
to LiDAR are written as:

w_ wl wl wT
Xj, = { P, vy q;

where p;’, v)', and q}’ are the position, velocity, and
orientation of IMU in the world frame W at time ¢. b,, and
b,, are the bias of accelerometer and gyroscope of IMU.

Let # and t; be the starting time and ending time of
a raw LiDAR scan .7, respectively, so the pre-integration
measurements Ap;;, Av;;, Aq;; of IMU from time ¢#; to ¢; are
computed as:

T T T
bar bgr :|
M

j=1 1
Apij=Y {AvikAt + EARik (8 — by, —ng) At 2}

k=i
j—1
Avij =Y ARy (& — b, —n,) Ar )
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Fig. 2.

Readers can refer to [17] for the detailed derivation of Eq.

Q).

B. Scan Deskewing and Feature Extraction

Due to the relative movement between the laser and the
robot, there will be motion distortion for the raw LiDAR
output .%;, where . represents the point cloud starting from
time # to time ;. Every point x(f) € .%; is transformed to
the correct position by linear interpolation to T,-Lj according
to its timestamp, where ¢ € [f;,¢ j). TiLj is obtained by IMU
pre-integration and extrinsic matrix T}, and the undistorted
scan is represented by .7;.

To improve the efficiency of calculation, only the feature
points that can reflect the characteristics of the surrounding
environment are selected to find the relative pose of the
LiDAR. Here we use the method of extracting feature points
located on sharp edges and planar surfaces proposed by
LOAM. The extracted edge and planar feature points from
% are denoted as .ZL and %t‘ , respectively.

C. LiDAR Relative Measurements

When the new feature points FL and f},ff are extracted,
the measurements of LiDAR need to be found to jointly
perform the optimization with IMU.

1) Building Local Map: Since the points of a single scan
are not dense enough, to obtain more accurate LiDAR mea-
surements, we use a sliding window to construct a local map.
The sliding window contains n LiDAR frames from time #;_;
to time #;_,. Since we have extracted planar points and edge

points separately, we transform { Fh L Fh H,ﬂel‘ i1 }
and ﬁ,f“”,...,%l,""z,ﬂﬁ["
with {Tf:,ll, ...,Tf:é,Tﬁ:%} to obtain two feature local maps,
Q//ZELH and //ZPLH.

2) Scan Matching: The relationship between the feature
points and the local maps at time #; are calculated by the
point-line and the point-plane distances. First, transform the
feature points ffeL " and 9;" to frame L;_;. The prediction
transformation TLI used here is obtained through IMU pre-
integration and extrinsic matrix T%. Here we take the plane
points as an example. For each transformed plane point / XIL,i,
find the nearest m points in ///,,L =1 to fit a plane in the frame

} to frame L;_; respectively

SRP Constraint

=

Graph Optimization

System overview of our algorithm.

L;—1 and express in Hesse normal form:
T
xn,—d,=0 3)

where n;, is the unit normal vector of plane, and d,, is the
distance from plane to the origin of frame L; ;. So for each
plane point xé" € fipL i, the residual is expressed as the point-
plane distance:

L, L
TLE" = |:RLi l Pz, l}

T
L L L
ro(Ty, I)Z(RL,' 'x;. +p;, ‘) n, —d,

Similar to the calculation method of the plane point, the
Hesse normal form can also describe the line in R2. For
each edge point, the residual is represented as the point-line
distance:

. o N
() = (R o) m—di )

D. Front-End Optimization

We build a cost function including IMU measurements
and LiDAR measurements jointly and optimize all the states
in the sliding window iteratively. For a sliding window of
size n at time f;, the states need to be optimized is X; =

[Ti.’”, T

- 1)} , and the final cost function is described
as:

1
"zz,."z{ L

Hrf(zzﬂ,xoué%

ac{i—n,....i—1} 1
2
fY X
xzig.ﬂfi Lpt1 (6)
Belion...i-1}
2
+ Y Vg(Xi)ecLin}
X €7f, Lyt
ye{i—n,....i—1}

where [|X|& = X7CX and r,(X;) is the residual of IMU
measurements, which is defined in[8]. r%(X;) and re(X;)
are the residuals of planar points matching and edge points
: Io Li—n  (Li—n .
matching. C* ,C,"™ ,C;”" represent the covariance ma-
. N a+l B+1 v+1 . .
trix. This non-linear least squares problem is solved using
the Levenberg—Marquardt algorithm[16].
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Fig. 3. The structure of the factor graph. The system selects keyframes
based on the odometry as the vertices of the factor graph. The edges between
the vertices are formed by LiDAR-Inertial odometry (blue curve) and SRP
constraints (red line).

Xsens Mti-300
(Inside)
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VLP-16

Fig. 4. The Jueying Mini quadruped robot equipped with Velodyne VLP-
16 and Xsens Mti-300. The LiDAR is fixed on the head of Jueying, and the
IMU is assembled at the center of mass.

IV. SRP CONSTRAINT AND GRAPH
OPTIMIZATION

In this part, we extract keyframes based on the LiDAR-
Inertial odometry and extract all SRP from the LiDAR scan
in the keyframe coordinate system, find the correspondence
in the entire graph and construct constraints as demonstrated
in Fig. 3.

A. SRP Extraction

For the calculation efficiency, we select keyframes as
vertices of the factor graph according to the odometry of the
front-end. Since we are using a LiDAR based on scanning
mechanism, the change of the yaw angle does not affect the
selection of keyframes. The new keyframe will be selected
only when the distance between the new frame and the
previous keyframe exceeds 1m or the pitch angle or roll angle
exceeds 10°.

We extract all SRP from the corrected LiDAR scan .¥;
for each newly added keyframe K;. Here we define the plane
as 7(n,d) through the Hesse normal form described by Eq.
3).n= [nx,ny,nZ]T represents the unit normal vector of the
plane, and d represents the distance from the coordinate
origin of K; to the plane. Next, apply RANSAC[18] to
extract planes for .#;, but not all planes are reserved for
building constraints, but only those planes that can represent
the structure of the building (e.g., ground, walls, etc.) are
selected. Here we adopt the following strategies for the
extraction of SRP:

« Keep all the planes with more than .4 points (Here, we
set .4 to 400).

« According to the normal vector of the extracted plane,
three planes containing the most points and almost
orthogonal are retained.

o Use 80% of the points in .7; to extract the plane, and
the remaining points default to the unextractable points.

In a multi-story building, the walls between different floors
are likely to be on the same plane in space, but small
planes such as doors and cabinets are usually not associated
between different floors. Therefore, we use the RANSAC
algorithm to extract planes according to the number of inliers
from large to small, and extract the most obvious planes
first. The plane of the ground can be used to constrain the
change of the Z-axis of the robot within the same floor
and during stair climbing. If the first 80% cannot find three
orthogonal SRPs, it is considered that there are no SRPs
in the remaining 20%. We build constraints using already
found SPRs (maybe 1 or 2). Too many planes are extracted
will increase the uncertainty of the RANSAC process and
cause mismatches in the plane matching process. Here we
only use three orthogonal planes to obtain the precise pose of
the LiDAR with 6-DOF. At the same time, fewer edges will
be constructed in the factor graph to reduce the calculation
time.

B. SRP Global Constraint

To construct the global constraint, all SRP extracted from
keyframe K; will be checked whether they have appeared in
the previous keyframes. Here we denote all the planes added

Ki_ Ki_

to the graph as II = {ﬂlKo,-~-,7t/g0,~-~,7'Cl’ l""v”k,-l,ll ,
and the SRP under the K; frame as 15 = nf(i,~-~ ,n,fi
1

First, according to the optimized results T}’gm,m e{l,--,i—

1} and the front-end odometry Tﬁ,w the planes in IT are
transformed to the frame of keyframe K;.

TK,' _TKi TKi—lTW _ R?m pg:n
Kn = "Kiiow TKa T | g 1
: 7
1K Rﬁn 0] [nkn )
1qKi = _ 1’? T 1 dKm

For all mhi(nki ki) e T m € {1,--- k;}, calculate the
angle 80 between its normal vector n%i and 'n*i and the
distance 5d between d%i and 'd%i. Once §6 and §d are lower
than the preset threshold, add a plane edge to the factor
graph. Otherwise, it’s considered a new plane and added to
IL.

C. Graph optimization

When the LiDAR-Inertial odometry and SRP construct
the constraints between keyframes, the SLAM problem is
expressed in a factor graph. The vertices of the graph
represent states of being optimized, and the edges represent
the constraints formed by the sensors’ measurements, as
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Fig. 5. Maps generated by Ours, Ours-without planes, Fast-LIO2, and LIO-SAM. Fast-LIO2, LIO-SAM and Ours-without planes drift on different stories.
SRP constraints allow the robot to obtain accurate pose estimation at different stories. (a) Maps of Building A. (b) Maps of Building B.

shown in Fig. 3. Following[19], [20], the maximum likeli-
hood estimation problem is expressed as this nonlinear least-
squares problem:
F(X): Z e(x,-,xj,z,-j)TQ,-je(x,-,xj,z,-j) (8)
(i,/)€€
where x represents all states to be optimized and x;,x; € X,
zij and €;; represent the mean and the information matrix
of a constraint between x; and x;, € is the set of pairs of
indices for which the constraint exist, and e (x;,x;,z;;) is the
error function between x;, x; and z;;. Eq. (8) is minimized
by Gauss-Newton or Levenberg-Marquardt algorithm.

V. EXPERIMENTS
A. Experimental Settings

To verify the versatility of the algorithm, we conduct
experiments in different buildings. We use the Jueying Mini
robot (Fig. 4) equipped with Velodyne VLP-16 and Xsens
Mti-300 to collect data from multiple sets of multi-story
scenes. The LiDAR is fixed on the head of Jueying, and
the IMU is assembled at the center of mass. Since there are
currently no publicly available datasets of LiDAR and IMU
for indoor multi-story scenes, we used Jueying to collect
actual data in two buildings and named them Building A and
Building B, respectively. Building A is a five-story building
in the shape of long corridor, and Building B is a six-story
building with two long corridor-shaped scattered on the left
and right. Our algorithm is tested on a PC with Intel Core
i7-7567U, 16G memory.

B. Results and Analysis

We compared the state-of-the-art SLAM algorithms based
on multi-sensor fusion, including Fast-LIO2[11], LIO-
SAM[4] and LOAM]J3]. Due to the unique experimental
scene, we cannot obtain the ground truth of the robot motion.
At the same time, we set the robot’s starting point and ending

point to be the same when collecting data to calculate the
relative position and orientation deviation.

Overview The performance of Ours, Fast-LIO2 and LIO-
SAM on the Building A and Building B datasets are shown
in Fig. 5. We can see that Ours with SRP constraint is
better than the others on both datasets because of plane
constraints. When the 16-line LiDAR moves horizontally, the
height estimation will produce more significant deviations,
especially in degraded scenarios such as corridors. Despite
the aid of IMU, there will still be cumulative errors, which
is seen more clearly in Fast-LIO2 and LIO-SAM. Ours-
without SRP optimizes each state in the sliding window,
which consumes more time, so the effect of height estimation
is better, but in the end, it does not return to the starting
point as well. The other two algorithms did not return to
the starting point in the end due to the lack of performing
loop closure. Trajectory Fig. 6 shows the trajectories of two
datasets. LIO-SAM fails in Building A and Building B, so we
did not plot its trajectory. Although we do not have global
ground truth, we can see in Fig. 6(b) and Fig. 6(d) that in
the staircase on the left of Building A and Building B, the
other three algorithms drift a lot. Still, after adding plane
constraints, ours can maintain the consistency of different
floors. Table I provides the relative deviations of translation
and rotation. Since accurate state estimation is achieved on
other stories, our algorithm can return to the starting point
without loop closure. Because of the same planes used to
construct constraints, both translation and rotation are almost
consistent with the starting point.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a SLAM algorithm for indoor multi-
story scenes with a plane as the main feature. To reduce the
possibility of plane mis-matching, we use the tightly coupled
LiDAR and IMU as the front-end. By plane matching and
constraints building, the robot can eliminate the cumulative
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Fig. 6. Comparison of trajectories estimated by different algorithms (LIO-SAM fails on both datasets, so we don’t plot its trajectory.). (a) Front view of
trajectories in Building A. (b) Front view of trajectories in Building B. (c) Top View of trajectories in Building A. (d) Top View of trajectories in Building

B.

TABLE I
THE ABSOLUTE VALUE OF RELATIVE DEVIATION OF DIFFERENT SLAM ALGORITHMS UNDER THE SAME STARTING POINT AND ENDING POINT.

Dataset Distance System Translation (m) R'otation (rad)

(m) AX AZ AXYZ | AYaw APitch ARoll AAngle

Ours 0.018  0.023 0.015 0.033 0.021 0.002 0.018 0.028

Ours-without planes 0.085  3.204 0.625 3.266 0.151 0.020 0.037 0.157

Building A 396 LOAM 1.190  4.620 4.061 6.265 0.143 0.081 0.048 0.171
LIO-SAM with loop ¢l | 8576  35.110 25.802 44.407 | 1.629 0.629 1.438 2.262

FAST-LIO2 1.529 1.424 1.442 2.539 0.078 0.023 0.086 0.118

Ours 0.021  0.023 0.002 0.031 0.006 0.007 0.006 0.011

Ours-without planes 0.571  13.491 3.139 13.863 | 0.214 0.048 0.051 0.225

Building B 613 LOAM 1.109 1.606 9.999 10.188 | 0.293 0.010 0.011 0.293
LIO-SAM with loop ¢l | 4296  12.792  12.109 18.131 | 2.409 0.030 0.180 2.416

FAST-LIO2 1.529 1.424 1.442 2.539 0.078 0.023 0.086 0.118

error in different stories, and achieve an effect similar to
”dimensionality reduction.” Experiments show that our al-
gorithm can significantly improve the state estimation and
increase the accuracy of both localization and mapping. This
improvement will boost robot performance in tasks such
as indoor autonomous navigation and detection, which is
extremely important for applications in indoor service and
rescue robotics. However, the current plane matching process
relies heavily on front-end odometry. In the future, it may be
necessary to combine features unique to the plane to make
the process more robust and fast.
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