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Structured Knowledge Injection and Reasoning Prompting for
Compliance On-chain Asset Analysis

Hao Tan'*, Shuangzhou Yan'*

, Hongxin Zhang'’, Zhuo Li*

1Zhejiang University
2State Street Technology (Zhejiang) Ltd.
{tttat, ysz22, zhx, lizhuo} @zju.edu.cn,

Abstract

The integration of Domain-Specific Lan-
guages (DSL) with Large Language Mod-
els (LLM) offers an innovative approach
to addressing complex problems within
specific domains. This paper proposes
the method of structured knowledge injec-
tion and reasoning prompting, and con-
ducts experimental analysis on the task
of compliance on-chain asset analysis.
DSL, as a specialized form of knowl-
edge representation, is tightly coupled
with domain-specific terminology, allow-
ing expert knowledge to be presented in
a structured form. Leveraging the ad-
vantages of DSL in knowledge represen-
tation, we propose its combination with
LLMs to enhance the model’s capability
to handle complex tasks within specific
domains. In this paper, we provide a de-
tailed explanation of our method’s appli-
cation to solving the complex task of on-
chain compliance asset analysis. Com-
pared to traditional LLM prompting meth-
ods, our approach shows significant im-
provements in key metrics.

1 Introduction

Recently, there has been notable advancement in the
field of natural language processing thanks to the de-
velopment of large language models (LLMs). LLMs
are commonly trained on large volumes of internet
text data, allowing them can easily adapt to diverse

*Both authors contributed equally to this research.
fCorresponding authors.

tasks in various domains without needing special-
ized data for each task.

The design of prompts is essential in the process
of adapting pre-trained LLMs to new tasks with lim-
ited or no task-specific training data. By employ-
ing prompt engineering techniques, these models are
able to outperform in a wide range of jobs and fields.
In contrast to traditional paradigms, which usually
need model retraining or substantial fine-tuning to
obtain performance on specific tasks, this adaptabil-
ity stands out

Analysis of smart contracts for on-chain compli-
ance tokens is a real problem in the production pro-
cess. On-chain financial assets typically possess
hundreds of financial attributes and various compli-
ance rule clauses. Unlike traditional financial prod-
ucts, financial domain experts analyzing on-chain
compliance assets need to read and understand So-
lidity code and combine it with financial domain
knowledge to analyze on-chain financial products.
This task comprises multiple sub-tasks such as un-
derstanding Solidity code, extracting financial at-
tributes, and reasoning about different compliance
clauses. Indeed, in real-life situations, there are nu-
merous domain-specific tasks that have similarities
and are characterized by complexity and strict lim-
itations. In order to tackle these issues, we suggest
implementing a method called structured knowledge
injection and reasoning prompt for LLMs. This
approach entails the injection of DSL syntax into
LLMs and the utilization of specialized syntax and
DSL to facilitate the handling of intricate restrictions
and task solutions by LLM:s.

The justification for utilizing DSL is grounded
in the research conducted by [Decker, 1998] and
[Seipel er al., 2018]. These scholars propose that
DSL, with their syntax closely aligned with domain-



specific terminology, offer a more adaptable means
of representing expert knowledge. DSL function as
a means of KR (knowledge representing) and also
improve the ability to execute knowledge, enabling
the organization and formalization of unstructured
knowledge. Given the benefits of DSL in organiz-
ing knowledge and handling intricate restrictions,
we suggest integrating DSL with LLMs.

Role Definition
Task constraints

DSL syntax in BNF format for domain-specific
tasks

A sample that includes input, BNF-specific
syntax, and output DSL

Task Input

e

LLM

<=

Specialized Grammar in BNF:
Specialized grammar generated by LLM

DSL:
DSL generated based on Specialized Grammar

v
DSL Compiler | «:«,

I Memetic proxy [l Constaining behavior [l sigifier [l input

Figure 1: Architecture of “’structured knowledge injection
and reasoning prompting”

Our approach involves encoding domain knowl-
edge as a DSL and designing its syntax using the
Backus-Naur Form (BNF)[McCracken and Reilly,
2003] representation. LLM incorporates structured
knowledge, specifically the BNF syntax paradigm,
throughout task execution. A specialized subset of
BNF syntax is utilized as intermediate reasoning
steps and restrictions. Ultimately, we generate the
outcome in DSL format, which is then handed over
to an external DSL compiler for the purpose of pars-
ing and resolving certain issues. The structure of our
strategy is depicted in Figure 1.

In order to evaluate the enhancement in perfor-

mance of our method in problem-solving, we gen-
erated a dataset specifically designed for analyzing
on-chain compliance token smart contracts. The
dataset comprises 200 compliance token smart con-
tracts, each representing a different type. Each con-
tract corresponds to an on-chain asset that possesses
a minimum of 30 distinct financial qualities. Addi-
tionally, there are 20 unique compliance rules and at
least 8 user admission conditions within each con-
tract. Furthermore, each contract is composed of
at least four sub-contracts. We have developed five
distinct measures to evaluate the quality of the out-
comes produced by LLM, including both broad and
detailed viewpoints.

In particular, we investigated the utilization of
GPT models gpt-3.5-turbo, gpt-4 and ChatCLM
model chatglm3-turbo for analyzing on-chain assets,
and we compared their performance against differ-
ent reference points. Empirical findings demonstrate
that our approach substantially improves the capac-
ity of all algorithms to assess on-chain compliance
token smart contracts. The effectiveness of our ap-
proach showcases the immense capability of utiliz-
ing the inherent information within LLMs for intri-
cate task reasoning, achieved through a meticulously
crafted fundamental structure and prompts specifi-
cally tailored for LLMs.

This achievement demonstrates that the applica-
tion of structured knowledge injection and reason-
ing prompt approach for LLMs is highly effective
in resolving intricate difficulties within specified do-
mains.

2 Blockchain, Solidity and Compliance
Token

Blockchain is a distributed ledger technology
that connects data through blocks, creating
an immutable, transparent, and decentralized
database [Bhutta et al., 2021]. Blockchain technol-
ogy ensures data consistency and trustworthiness
through a consensus mechanism.

Smart contracts represent automated contracts ex-
ecuted on the blockchain. They facilitate trustwor-
thy, secure, and transparent transactions and con-
tract executions. Smart contracts are written using
Solidity, a high-level programming language that
is specifically designed for creating smart contracts
and is widely used on Ethereum. Solidity can de-
fine the state and behavior of contracts and interact
with other contracts. It is the most commonly used
language for writing smart contracts at present.



Compliance tokens are a form of regulated secu-
rities issued using blockchain technology. These to-
kens can represent shares, bonds, real estate, and
other real assets, traded and held via the blockchain.
Examining compliance tokens and their correspond-
ing smart contracts is essential in contemporary
financial and technical settings.Compliance analy-
sis assists firms in discovering and capitalising on
emerging blockchain and smart contract prospects
while complying with rules, thereby facilitating
worldwide expansion and fostering innovation.

3 Related Work

GPT-3[Brown et al., 2020] demonstrated a strong
capability to perform few-shot predictions, where
the model is given a description of the task in nat-
ural language with few examples. Scaling model
size, data, and computing are crucial to enable this
learning ability.[Rae ef al., 2021; Smith et al., 2022;
Chowdhery et al., 2023; Dua et al., 2019] have re-
cently suggested training diverse types of LLMs us-
ing distinct training techniques. Smaller language
models lack the capability to tackle new tasks by
learning from a small number of examples. This
ability only becomes apparent when the size of
the model is raised, as stated by [Kaplan er al.,
2020]. In recent times, a number of studies [Xie
et al., 2023; Work, ]) have focused on comprehend-
ing the mechanisms and rationales behind in-context
learning. Another study is BINDER [Cheng et
al., 2022], which employs Codex to generate “soft”
SQL queries for responding to inquiries based on ta-
bles.

Chain-of-thought prompting: Although LLMs
have shown significant success in various natural
language processing tasks, their reasoning capa-
bilities are often seen as a limitation. Recently,
Chain-of-Thought (CoT) reasoning[Wei et al., 2022;
Kojima et al., 2022; Wang et al., 2022] has been
proposed to enhance LLMs’ ability to perform rea-
soning tasks by demonstrating the “reasoning pro-
cess in natural language.” [Suzgun er al., 2022]have
shown that CoT can surpass human performance on
challenging BIG-Bench tasks. Subsequently, sev-
eral other studies [Drozdov er al., 2022; Nye et al.,
2021] have proposed different methods to leverage
LLMs for reasoning tasks by allowing intermediate
steps. ReAct[Yao et al.,, 2022] suggests enhanc-
ing LLMs’ reasoning capabilities by utilizing ex-
ternal tools such as search engines. [Chen et al.,
2022] have proposed “Program of Thoughts” (PoT),
a novel prompting method that generates program

Asset

Type System

Property

Management

Role

Compliance

Figure 2: Syntactic Definition of our DSL

code to express reasoning steps and delegates com-
putational tasks to a program interpreter, effectively
separating the reasoning and computation processes.

LLMs for program generation and semantic pars-
ing: Generating programs from natural language
specifications, often referred to as semantic parsing,
is a sub-problem of program synthesis. [Austin et
al., 2021; Xu et al., 2022] have explored methods
for using LLMs to generate code in general pro-
gramming languages (e.g., Python). There is also
work on using LLMs for tool usage through fur-
ther training[Schick et al., 2024] or prompting[Qin
etal.,2023; Wang et al., 2023] , studying how model
size[Qiu et al., 2022] and retrievers[Ye et al., 2020;
Levy et al., 2022] affect in-context learning, seman-
tic parsing, and constrained decoding in program
generation[Scholak er al., 2021; Poesia et al., 2022].

4 Methodology

4.1 Design Principles and Syntax of DSL

Our approach uses LLM to collect and analyze on-
chain token issuance data, identifying key frame-
works and trends without domain experts. LLM’s
language and pattern recognition capabilities enable
efficient analysis of complex on-chain data.

For data labeling, we use top market cap tokens
and NFTs from Etherscan and Cryptoslam, respec-
tively, resulting in 975 smart contracts and 14,200
functions after data cleansing. We analyze these
contracts to identify common features and compo-
nents for DSL design.

We process the source code using GPT-4[Achiam
et al., 2023] and standardize outputs through prompt



LLM Prompt

#ROLE

You are an expert programmer, and you need to write the DSL(Domain speific language) for the given Solidity code. First, you should write a grammar
that contains all the necessary BNF rules. Then, you should write DSL that conform to your predicted rules.

e t_symbol " (constant_type_statement property_statement management_statement| role_statement |
#RESPONSE_FORMAT
BNF_grammar_rules: str, A grammar generated from Solidity code that contains all the necessary Backus-Naur Form rules.
DSL: str, Generated DSL based on the BNF grammar rules
LLM Output
BNF_grammar_rules:
Asset_Token :i= * Asset_name> "," <Asset_symbol> "{" (constant_type_statement | property_statement | management_statement | role_statement |
compliance_statement) "}" g
DSL:
Asset (Asset, AST) { Property AST_financial {...}.
Management AST_actions {...}
Role AST_role {...}
Compliance AST_rules {...}
¥ y

Figure 3: Examples of our prompting method. G represents for the entire DSL grammar, g represents for the specific
subset of grammar and y represents for the matching specialized DSL

engineering. A JSON label structure captures code
structure, roles, functions, and compilation versions.
Analyzing 975 smart contracts, we identify 2,447
unique functions after removing duplicates. Us-
ing vectorization and DBSCAN clustering, we cat-
egorize the top 20 frequent functions into five cat-
egories: Token Management, Permission Control,
Contract Upgrading, Contract Framework Construc-
tion, and Mathematical Calculation. Essential func-
tions include transfer, transferFrom, approve, bal-
anceOf, allowance, totalSupply, burn, mint, trans-
ferownership, and constructor.

We specify the grammar in our DSL using the
BNF. Figure 2 illustrates the syntactic definition of
our DSL. Compliance assets, designated as Asset,
have a structure similar to a class in object-oriented
programming. When designing an Asset, the name
and symbol must be specified. Each Asset includes
the setup of static variables and the execution of sev-
eral modules, such as:

* Type System: Includes Claim and Token.
Claim represents qualifications like compliance
standards. We manage a database for setting
and assigning Claim details in DSL. Token is
similar to the address type in Solidity and is

used for ERC20 asset configuration.

* Property: Includes financial asset details such
as admittance fee or notional price. Time-
related attributes are represented by the date
variable.

* Management: Manages on-chain asset be-
havior, defining actions like asset purchase
and margin calls. Key actions include Trans,
TransF, Mintable, and Burnable.

* Role: Represents participants in the compli-
ance token market, setting regulatory limita-
tions and specifying eligible groups.

e Compliance: Involves adding compliance
clauses to the asset. A compliance clause in-
cludes a role condition, asset condition, time
condition, and action, defining when specific
actions can occur.

4.2 Thought with Specific Knowledge
Representation

To address intricate challenges, we propose a novel
approach called Prompt Engineering based on Struc-
tural Knowledge Injection and Reasoning, which



enhances the learning process in the LLM envi-
ronment. In order to improve LLM’s proficiency
in numerical reasoning, PoT transforms the logical
processes of reasoning into Python code that can
be executed, effectively separating the process of
reasoning from the computational aspect of solv-
ing mathematical issues. SCoT aims to transform
the intermediate reasoning processes of CoT into
structured source code, which allows LLM to pro-
duce code with greater precision. The primary aim
of the study is to enhance LLM’s capabilities in
numerical computation and code generation using
the GPL(general-purpose programming language),
specifically the Python scripting language. Never-
theless, when confronted with intricate practical is-
sues, these solutions are not suitable.

However, drawing inspiration from these ap-
proaches, given that the introduction of General Pur-
pose Languages (GPL) is insufficient for solving the
majority of jobs, it would be advantageous to con-
sider implementing DSL tailored to specific tasks
in order to efficiently address intricate difficulties.
According to Wang et al’s findings in Grammar
Prompt, LLM demonstrates exceptional proficiency
in both utilizing and creating DSL. It can showcase
strong capabilities for many DSL.

Therefore, we propose a Prompt method: struc-
tured knowledge injection and reasoning prompt-
ing.Instead of using PoT/SCoT, our approach in-
volves creating customized DSL and their related
DSL grammars tailored to specific activities. Dur-
ing the process of reasoning in LLM, we include
the entire DSL grammar G into the context of LLM.
Meanwhile, during the output phase of the LLM, we
allow LLM to make predictions for a specific subset
of grammar, called g, based on the user’s request.
This subset is a part of the set G. Subsequently, with
the anticipated subset g, LLM generates the match-
ing specialized DSL y. Ultimately, we employ a
DSL encoder S to analyze y and acquire the ulti-
mate outcome of the task. The method’s structure
is depicted in Figure 1. Our method primarily con-
sists of four components: DSL Grammar Injection
under BNF Paradigm, Specialized Grammar Gener-
ation, DSL Generation, and Examples. An example
of a Prompt is illustrated in Figure 3.

Our approach strictly follows the prompt princi-
ples outlined by Reynolds and McDonell (2021),
which encompass the following: Signifier: A sig-
nifier is a pattern which keys the intended behavior.
Memetic proxy: A memetic proxy is a concept in
which a character or characteristic situation is used

Table 1: Contract Categorization Rules

Level Number of Financial Attributes
Simple 30-70
Medium 71-110
Difficult 111-150

as a proxy for an intention. Constraining behavior:
In addition to directing the LLM on the desirable re-
sponse. Meta prompting: A meta prompt is a short
phrase or a fill-in-the-blank template encapsulat-ing
a more general intention that will unfold into a more
specific prompt when combined with ad-ditional in-
formation. First, we require the LLM to assume the
role of a programming expert and define its task.
Subsequently, we impose limitations on the LLM’s
conduct within the given Prompt. These constraints
are unrelated to the DSL Grammar and are typi-
cally designed according to the specific task context.
Next, we incorporate the BNF paradigm DSL gram-
mar, typically opting for the entire DSL grammar
to empower the LLM in producing a more precise
specialized grammar subset. To further improve the
LLM’s compliance with instructions, we incorporate
illustrations.

S Experiments

5.1 Experiment set up

Dataset: In our analysis of compliance token
smart contracts, we have compiled a corresponding
dataset. This dataset consists of 200 on-chain com-
pliance token smart contracts with different levels
of complexity. It also includes their corresponding
DSL code. The purpose of this dataset is to evaluate
the LLM’s ability to analyze on-chain compliance
tokens. The complexity of the smart contracts in the
collection is determined by the quantity of financial
attributes. The analysis difficulty of these compli-
ance contracts has been classified into three levels:
simple, medium, and difficult. Table 1 outlines the
criteria used to classify the contracts into different
levels.

We conducted an experiment to evaluate the ef-
fectiveness of several methods in completing tasks
of different levels of complexity.

Baseline: Our findings comprise three different
models, including gpt-3.5-turbo, gpt-4, and chat-
glm3. We examine two prediction strategies: the
normal prompt technique, which produces results
by specifying the output format, called STD in
short and the chain of thought prompt approach,



which generates results through sequential reason-
ing, called COT in short.

Implementation Details: For our experiment,
we predominantly utilized the OpenAl API and
the ChatGLM API. Our approach involved utilizing
the LLM to generate DSL code, which was subse-
quently processed by an external DSL parsing tool
to generate the ultimate compliance asset analysis
report. The LLM output for the STD and COT tech-
niques was provided in a predefined JSON format.

In order to accommodate few-shot scenarios, we
have incorporated specific example types for various
procedures. Our method involves utilizing input So-
lidity code, specialized DSL Grammar for the input
code, and generating DSL code based on the DSL
Grammar. The STD and COT methods supplied ex-
amples that consisted of Solidity code as input and
the matching JSON format as output. Employing
enhanced output instructions aids the model in com-
prehending the designated output format more ef-
fectively. Thus, in order to strengthen the output re-
quirements of the LLM, we included a #RESPONSE
FORMAT prompt for each method to provide a con-
sistent format for the LLM’s output.

Metric Design:

For the task of analyzing compliance token smart
contracts, we have designed detailed metrics to eval-
uate performance from both macro and micro di-
mensions. The definitions and calculation formulas
for each measure are as follows:

* FAA: Financial Attribute Accuracy (Macro)
* KCAR: KYC Clause Accuracy Rate (Macro)

* UACIA: User Admission Clause Identification
Accuracy (Micro)

* ARCIA: Asset Requirement Clause Identifica-
tion Accuracy (Micro)

e TRICA: Time-Related Clause Identification
Accuracy (Micro)

5.2 Main Result

Main Results Table 2 presents our results on the
complete dataset, while Tables 2-4 showcase com-
parisons of various methods across different mod-
els on datasets of varying difficulty levels. In terms
of the KCAR metric, for the gpt-3.5-turbo model,
our method increased the number of correctly iden-
tified instances from nearly 300 to over 2100; for the
gpt-4 model and the chatgl. M-3-turbo model, per-
formance improved by 15.0% and 48.5%, respec-
tively. The significant enhancements on GPT-3.5

and ChatGLM stem from the nature of the KCAR
metric, which requires LLMs to extract user quali-
fication numbers from Solidity smart contract code
and cross-reference them with a provided qualifica-
tion list. Our method effectively determines qual-
ification numbers based on DSL syntax constraints
and accurately corresponds qualification clauses by
leveraging a DSL compilation tool, resulting in a
marked performance improvement. For the UACA
metric, our method compared to the other two meth-
ods achieved improvements of over 87.3%/ranking
first/58.5% . Regarding the ARICA task, our method
demonstrated significant performance gains. The
baseline methods failed to accurately identify any
compliance clauses related to assets in gpt-3.5-
turbo and gpt-4 models, whereas our method suc-
cessfully identified 28.7% and 55.7% of the data,
respectively. Due to the performance limitations
of chatglm3-turbo, our method’s improvement was
modest, with an accuracy of 0.4% compared to
CoT’s 0.3%. This discrepancy arises because the
ARICA task involves extracting compliance clauses
related to user-held assets, including the recognition
of fund amounts and currency types. Many on-chain
asset currencies may not be present in the LLM’s
pre-training data, such as newly introduced tokens
like MNT, FET, and PEPE. As a result, LLMs may
fail to recognize them. However, our method can ac-
curately identify asset quantities and currency types
through DSL syntax constraints.

Omission in responses For the FAA and TRCIA
metrics, our method did not achieve notable im-
provements. Consequently, we conducted a more
detailed analysis of the experimental data.

As introduced in Section 5.1, we categorized the
data in our dataset into three levels of complexity:
simple, medium, and difficult. We utilized the gpt-
3.5-turbo model to analyze the performance across
these three dataset levels, with results shown in Ta-
ble 3.

It is evident that our method achieved the best re-
sults across all metrics in the simple-level data, with
significant performance improvements. However,
for medium and difficult levels, our method under-
performed compared to the other two methods in the
FAA metric (financial attribute identification) and
the TRCIA metric (time compliance clause identi-
fication). Analysis of the LLM outputs revealed the
issue: when handling large data volumes, the mod-
els exhibited ”lazy” behavior, using ...” to replace
complete answers, leading to incomplete outputs.
Approximately 20% of the responses showed such



Table 2: Experiment result for different method and dif-
ferent model

Table 4: Experiment Results Comparing Zero-shot and
One-shot Performance of Our Method Using GPT-3.5

Config FAA KCAR UACA ARICA TRICA Config FAA KCAR UACA ARICA TRICA
G3.5-STD 0.795 0.121 0.324 0.006 0.186 Zero-shot  0.715 0.000 0.507 0.275 0.330
G3.5-COT 0.790 0.114 0.293 0.006 0.212 One-shot  0.784 0.686 0.607 0.288 0.186
G3.5-Ours 0.784 0.686 0.607 0.288 0.186
G4-STD 0.746  0.505 0448 0.000 0.469 Table 5: Results for molecule generation
G4-COT 0.767 0.468 0.638 0.001 0.735
G4-Ours 0.571 0.580 0.638 0.557 0.548

Method v D R M
C3-STD 0.792 0.235 0.224 0.000 0.257 -
C3-COT  0.787 0230 0.115 0.003 0.086 LLM with DSL 98 074 91.0 933
C3-Ours 0366 0349 0355 0.004 0.207 Standard Prompting 87.7 0.73 80.0 76.7

Note: G3.5 denotes GPT-3.5, G4 denotes GPT-4, and
C3 denotes ChatGLM-3.

omissions, with only 3% occurring in simple data
and over 30 instances in medium and difficult data.
This is due to the complexity of generating BNF
DSL syntax outputs for our method; complex data
outputs led LLMs to perceive data types as repeti-
tive, resulting in self-omissions.

Zero-shot Results Lastly, we evaluated the zero-
shot performance of our method, comparing it with
one-shot in Table 4. It is clear that our method
heavily relies on sample setups; the absence of sam-
ples significantly degrades performance. Despite
providing DSL syntax in the outputs, the relation-
ship between DSL syntax and its conversion re-
mains complex, necessitating designed examples to
prompt conversion rules effectively.

Table 3: Performance Comparison of GPT-3.5-turbo
Across Different Dataset Levels

Method FAA KCAR UACA ARICA TRICA
Simple

STD 0.797 0.102 0.325 0.047 0.196

COT 0.807 0.128 0.268 0.006 0.193

Ours 0942 0.710 0.720 0349 0.212
Medium

STD 0.811 0.128 0.346 0.011 0.214

COT 0.797 0.116 0.282 0.005 0.183

Ours 0.751  0.696 0.636 0.280 0.194
Difficult

STD 0.784 0.140 0.304 0.001 0.154

COT 0.784 0.096 0.330 0.008 0.256

Ours 0.734  0.648 0.454 0.225 0.150

Note: The metrics are validity (V), diversity (D), ret-
rosynthesis score (R) and membership (M). Higher is
better for all metrics.

5.3 More Than Solidity Code Analysis

Ultimately, our objective is to prove, using appropri-
ate experimental data, that our method can be used
not only for code analysis jobs but also for a wide
range of other activities with favorable outcomes.
As an illustration, we chose the problem of pro-
ducing distinct kinds of molecules. The empirical
data is derived from Grammar Prompting[Wang et
al., 2024]. The result on molecule class belongs to
Acrylates was shown in Table 5

6 Conclusion and Future Work

This work explores the utilization of DSL and
DSL syntax as structural knowledge to augment the
problem-solving capabilities of LLMs for compli-
cated tasks. In the task of compliance token anal-
ysis, our method demonstrates a leading advantage
across multiple metrics.DSL,and its syntax, which is
described in Backus-Naur Form, are utilized as spe-
cific techniques for representing knowledge. They
not only act as tools for knowledge representation
but also enhance the executability of knowledge,
allowing unstructured knowledge to be structured
and formalized. This enhances the adaptable de-
piction of knowledge appropriate to a certain do-
main. [Austin et al., 2021] introduced a framework
for DSL that is based on ontology. This frame-
work enables the DSL to undergo dynamic modifi-
cations, thus accommodating advancements. In the
future, we will investigate the incorporation of dy-
namic DSL with LLMs to consistently enhance the
problem-solving capacities of LLMs.
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