BIITERURIENERLBIRS: 20250854358

B -1
AL TR (HIXE TIEI=M)
HTERUARTFNELS

a2 g

L= 22260090

AR TIEIPERFR LAl 2] (Sugh) - {5 B

AT TIRVMERE GRIAKZETIEIMFER)

20255F03H13H

1HZR1 PR

o AR FRH SR ISR BEE A R R AL R
 ETIHRESENE, HERELE,

S RGN B A, 5 I TR
WU, A4UELETHTED

=\ RPN LWL LT BEEKE, R
BT, A HTHAE

P AT 0 A PP = L4 5 i DRI A BedH s
G S NN SR AT+ B TREITHARR Ll S5 (4 4

PE+HRAK 30, 1147,

(—) ZAXFEL (B (WHLTREMER (WL RETEMER) TEREWEMFARET
BITERARPPESERR) , ST (GU) TEIMBAR P A ChnE, 226113]

L AT EANE B RIRME WA IREEF R (A2 T2007)

R BRI SHAR L EN R SHARSUSEBL T HLse R a5 & W ARRE S, KREA
BHAMRE, HE RGO FIRT3/310, RGEE T N TERE. Mlagse]. XHEESEZ O MRFE A
o LB Bt N K 2~CADRCG R K # T 520 =, A mRERIESHEE (LD 58
Rethk (Agent) , IRAWIR T MRS, BREA LT 5SS RIS RR.

FELMVHAR KR T, Hog 2 s XN I BE -

RIESE) HIEE A SRAFRWILAH] (T MBS T IR IR SRR » %
ANEREFESEE, BEF0E. 2ERMAEME (FONND JEMBH &R, T
BB 22 S HOUR LR B K AR AL, T AR S] T /48 (DANet) Sy 4ER I 1270 8,
REFRTHE SRR, JFHRIEREHE (FEERIT) , RIS MUESE . BRI
e (DCT) R ANF I BEFILN R GEER,

VRSB R RIS 5E AL 1 Function
Cal IBEUAR AL, PNERRHELHEIE 98 . OREAR (WiloraffiMSEPEFT. &S50 , BERTH
THAHERTER, WA 1ERFEMITILL: (Structured Knowledge Injection and

Reasoning Prompting for Compliance On—chain Asset
Analysis) FEIN 1 IRFE 5 S HELE AL R RE

X gt SR RE AL £ “REIRBEIE PSR BT, 58 NS AgEit,
LR IGUEENE (VO S5& 515, B s a] vk X & W) 2 245 i i e, AR B x40 A 2K
AEAR. FBFNRUEHS SRR . FRET I PL—1E K £ 1L (FCToken: A Flexible

Framework for Blockchain-Based Compliance Tokenization)

ZRBMERA (Multi-Agent) : FERMNESRAEEMF, FHFMulti-
AgentHELLRE PMERE MO, 783 TF220. 93, FHHIE LR (—F2E T KB FHEA (LLM) FICHE (Agent
YEARMMTE R FIWET) , B T ERRG S EPCACI L ETR

HEANRAS 22 T X 2 3E 383k 4 (b [RS2 AE IR+ BT R TR 2. Phiiph B S 2 55)
, BE—BEMIE 1 AR5 TR A XU A 4%

2. TRESEEKEZH (A 2F200)

FE AR AR R 1 35 IS O H 2256, S SEEIE . XREETT R 5B RE R Gtiit
* ATRIEAL 50 AEMBCTAEIE], B ahad/ 2 B Function

Cal 1Mt 4R, JFRBAEMIENEZ, SCRFATEA K, JRRARRERE ST ZEBFCLES L 10B LA AR
RS (2024468), HaEHES) TR R SZTH#E30%.

*

XERBEG T GIF R AL T8 B HORA IR A = ol se i), £ Se RIS IE
W awta, st LS B AG SIARE RS LER TR, s mlikX &,
KRGS LIRS, Bh 75 4v 3453073 Jo I H 42 3% 5285

*

BREELSHREEN: £ R TAEWIE, e BRI o AL B RS, B LoRASR Y
YIGRSETHPRERCR s AERIEL 55 2T Mul ti-

AgentHEZRE AR, PEREEHS EAIFHIG LA, Bl IT & TREE40%.

HsRBe 2 A SRRV . KRGt BIHE R, JUHAEXRE SATRE 51 e
TR TR Hh RE

3. FESERR TAE PR G E Fr HAR R B2 TR BRI RS C(R4T10007)

ESVDE

THE 5 AT RAFEARAR AR OREHREIENFEIFR” BHF, T
FeAR TR EE SRR 5, HIRE FVEAX SR, B LBtk aett. s
ZInl i R = KB AR A

v 2 2 0

1.

P ENAX SRR BIAERC: AFMX A EER FBUE LA 2L IR R, Rt alid
EIGIE,

2. HEEHSMEAEZE: AP S0 E S X E, (57l BUsE SitE.

3.

AR & 2 TR AT R A T RMELA SRR R 280V 558 50, SEmi-F- & i BLE
2 VESSEY

* FHAG M EBT

*
PR TR BES LT PTIREE S N2, SIGERSE ORI, KA R RIVE X %
AN ELZ .

*
SKBUT R KHISoliditydn S & UMUAENR, SCRFSCI 58T I8 2 2 ML Al ORI 20
ikt
* BB E PRGN

*
TR FEREP OIS (DID) KESR, RAWIIEFEIE (VO 5FMPNEY (ZKP) .

%k
SV P s IS BB 5E BRKYC/ AMLIAE,, AR RO SRR IE HoE: 52 5 il I ZKP S iiE
FEUEA M, B R LS
* RS e &L E TR I K

* PORBREG: WAL ECE A, T AU E RS (DSL) A sA AR,

%k
ST WYL S QA E (WEIERAT. AR . H MM E S B 34 ot
HEEL,
LRGN
HeBCAR THIF B AR, B iR A B Ass P EEAERARTEEEO.
MATTHR: TEAXBEEF R TTN, ®iEES TAEGIES S0 /gt 18Il
WLEFRTER, BOLEARMES3T, —{ERFILL (FCToken: A Flexible Framework for
Blockchain—Based Compliance Tokenization

) R AHRBCR ELARSCEAA AR S0 GRS e VR AR (R LS o R L)

Lo
SEP;

ESIPE

THE & VAT Native®l[125 “Function
Cal IBIRUMRAL S5 G4 TiH, FMk THAHEERIRNFMR. 2AE5IATAER IA L
W), SCPEEZ LU e R BRI

IR T

1.

AT RFMRIER: HaidnEi= 2 nHHEA, RAMEA IS HLE S
I

2. AT IHATYHERENR SN : BLA A I-AT 8 FH AR AL 68%, F2M & AL S5 PAT R
3. LAEvE kiR : TR LB TCEREE R, [AR HEEE L8R (K T-200ms .
fif R T 5 S it -
* BASEIREM
* AR BitMulti-
Agentfj BLAEZE, HHIH PS5 THERXHI 5, AREEHESH. RERHNZHEEE.

%k
SEILTVE: T Python & H AR A BCE T8, SI AR 5| B4l Agent /T NIZ 4R, ARkl
0T+ EREA, 78 5a80%H W L H M.
* BIRG5 HHAT L

* BREEZE: R Lorafifi /7%, iibqwen2-7b 572bM Y, A T H A6

%k
SEMTTE: SIANGEEREI ISR, B T REFRSSHERIES: B RE Y 2] SR8 E 2 5 N
FATIES EoRE,
MANTTHR: FEATH ST, FEFEART RIS, —ERARLC—F: (Struct
ured Knowledge Injection and Reasoning Prompting for Compliance On—chain Asset
Analysis)

(2D BUBHNEST (REME [REBH, FURSERHFESE (BEREMRI. HRKEE. €5
EF . REUESS . RO A LB AR SIVIERS) fhigss, HFRESEH—4]

1.
ATFRRARAE [RRE. FRBR. KEFFER AEE ST THERE. EERE. B
BRIRE ., A]

D% S~ . X . VNN
. b, e (o | PORMIEL TIRERR) o) .
JRARAATR ROIERRE) | ek | AEH | SRR |, I\ #HE
ML, bR, Tk, #1E | jEpfjE e | sphiseae | 0
LB RS iﬁz
FCToken: A Flexible
Framework for por:
o p 2024402 | 10.1109/1IC
in— SR '
Bloékch?%n Based = HoeH DMW60847. 2 1/6
omp-tance 023. 00093
Tokenization
HigE5: 20
HeT g) P 5 T 4 . : 20214E05
BETEFIMBRE TR | e qmig 05 | 10587258 1/5
il H27H)

2. RAWAERAE (RIS 50 REMATE . RBEBRREMAEARE . SVEREEERTR. B
FERR TR SEEEL. BORIRE . B EAR. R AR S . AT IR S . AR TT
. BISRRRE . TRER. BREINE . #ITILRE P RIERER KRB NEF 2
%]

—f{EsR B C: (Structured Knowledge Injection and Reasoning Prompting for
Compliance On—chain Asset Analysis) . Y&k T<1: IJCAI-OpenKG.

(=) ERIHARRE. BRI K AWK

GG O LRI A AT RS 82 4y

LRI
e g 1.2 CERIERDLE)
e R 84 4

TAFZ P AEER)
ANKE

MAFEH: BN ERFEEREBARLEY, WHER, BAE—TITHME
, RRILFTHY !

Y £1.

P O

= HERIERIT R EBERMRIEZATER

H % &I
ERZVE

ilifml‘ji?zﬁﬁﬁ%)fﬁ%ﬁﬁm S B FET @7&
7

Org Oak DK;{?%_ -5
BE SN/ FRENE TR ERSEF

25)

FRIRATRL
P /AN

\

ol
WRYE VP A]Zﬂ%Wﬁ%éE%E3X¢EPT&)\EiﬂE?f*ﬁ*iﬁﬁtZ‘(ahtzﬁﬁigzgéﬁ\ Elk
SEBNERRT R KB A0S0, RRIEEBI) | M BRI IR
FEEBEMIEATADTOATIER, BBARERNT:

Clidid OrEs (ABER:)
TEMZRAFEENAZEFRETF (AF) . £ A H

WL K ¥ OB R OE B
B S B Sk Rt

5. 22260090 P4 EiE Al % I%ﬁ:lﬁﬁiﬁ Bl HHEAEA il 2. 55
BV IS AR RIFR: 26. 0524 T3k1F: 28.0%4 ANFEH: 2022-09 ENEIEE
FAEH S EEVIEH S BT AL

£ 3I [A] TRARATEK | 0| St | WRERMER 2 3] I (] RIEAR L St | BRR R
2022-2023%F K F M | A hEF AL LT SRR SER 2.0 87 LA |2022-2023 % FHEFEM | HABHEERIS Lof 74 AR
2022-2023% K F L | TIRERBIHATIE L5 87 TR |2022-2023 % H M | A SHERRHIRY Lo| % AFEELR
2022-2023 KT | MU H T 2.0 88 TAGRIER (2022-2023 % AR (MBS B % A Bk 55 B AT 2Lt 2.0 83 LR
2022-2023 2 F KL (@M TIE ST 3.0 76 LA FMER [2022-2023 % FEHFEH | TRZIMA0H 6L B 4e 2.0 96 ErikiBiR
2022-2023F FEMLEH |HAALERLEEIRT 1.0 71 BARIEIR |2022-2023 ¥ EE HEHH | A LT 2.0| &t | BlEAR
2022-2023 % F LA FEM |PAL AR R RATE 1.5 86 B AR [2022-2023 FEFEE M | BN EBAM S A6 18 & BLA T 5 Sk 3.0/ 85 By Arif
2022-20232 FF LY | MIBRMIRME R A SLEUTH 2.0 86 iR B AERBRE 2.0| @i
2022-20232FEHZF M | TG 2.0 64 A AR

YO L BTSRRI =Rkt |, DI GEE. AadEid) . HGH (. R, A R RS
Bt RRHED o BGRN: TRBK
2. FHEF w7 FoREBRIE. FTENEH: 2025-03-20

(Ei Compendex) Y% 3%iiF B

8% “Engincering Village”, TR H (Ei Compendex) W5k, (RrZm (],
2024412 A 23 H).

<RECORD 1>

Accession number:20240915663273

Title:FCToken: A Flexible Framework for Blockchain-Based Compliance Tokenization

Authors:Tan, Hao (1); Yan, Shuangzhou (1); Zou, Xin (1); Xie, Guanghuan (1); Zhang, Hongxin (1); Li,
Zhuo (2)

Author affiliation:(1) Zhejiang University, State Key Lab of Cad&cg, Hangzhou, China; (2) State Street
Technology Ltd., Global Technology Service Department, Hangzhou, China

Corresponding authors:Zhang, Hongxin(zhx@zju.edu.cn); Li, Zhuo(lizhuo@zju.edu.cn)

Source title:IEEE International Conference on Data Mining Workshops, [(CDMW

Abbreviated source title:IEEE Int. Conf. Data Mining Workshops, ICDMW

Part number:1 of 1

Issue title:Proceedings - 23rd IEEE International Conference on Data Mining Workshops, ICDMW 2023
Issue date:2023

Publication year:2023

Pages:671-681

Language:English

ISSN:23759232

E-ISSN:23759259

ISBN-13:9798350381641

Document type:Conference article (CA)

Conference name:23rd IEEE International Conference on Data Mining Workshops, ICDMW 2023
Conference date:December 1,2023 - December 4, 2023

Conference location:Shanghai, China

Conference code:197121

Sponsor:IEEE Computer Society; Technology Innovation Institute; TWO SIGMA; US National Science
Foundation (NSF)

Publisher:IEEE Computer Society

Number of references:26

Main heading:Blockchain

Controlled terms:Codes (symbols)

Uncontrolled terms:'current - Block-chain - Compliance - Entry barriers - Flexible framework - Four-core -
Gas fee - Low-code - Prototype system - Tokenization

Classification code:723.2 Data Processing and Image Processing - 723.3 Database Systems
DOI:10.1109/ICDMW60847.2023.00093

Database:Compendex

Compilation and indexing terms, Copyright 2024 Elsevier Inc.

=
1. U EREL R KE CALIS FWFESI R4,
2. U ERZESERHBBBHARBREEE NN,

JBES8E3E . https://ieeexplore.ieee.org/document/10411565
DOI:

IEEE.org | IEEE Xplore

IEEE Xplore®

10.1109/1CDMW60847.2023.00093

IEEE SA

Donate | Cart | Create Account | Personal Sign In

<IEEE

IEEE Spectrum | More Sites

Browse v My Settings v Help v Institutional Sign In

ADVANCED SEARCH

Conferences > 2023 IEEE International Confe... @

FCToken: A Flexible Framework for Blockchain-Based Compliance Tokenization

[cite is

Publisher: IEEE

Hao Tan; Shuangzhou Yan; Xin Zou; Guanghuan Xie; Hongxin Zhang; Zhuo Li All Authors
68
Ful @ < © a
ext Views
Feedback
Abstract Abstract: More Like This

Tokenization has emerged as a pivotal topic in fintech. It involves converting indivisible assets into divisible tokens,
D t Secti Smart Contracts and
ocument sections streamlining their trade and management. While asset tokenization offers benefits like reduced entry barriers, faster .
Tokenization: Revolutionizing Real

1. Introduction
II. Related Work

lil. Framework for

Compliance Tokenization

IV. Interactive Compliance

Token Issuance

V. Implementation and

Deployment Costs
Show Full Outline v
Authors
Figures
References
Keywords
Metrics

Footnotes

IEEE Personal Account

CHANGE USERNAME/PASSWORD

transaction settlements, and improved asset liquidity, it also presents challenges, notably concerns like money
laundering and terrorism financing. The current landscape lacks comprehensive regulatory measures, allowing
unrestricted access for both token issuers and buyers. To address the aforementioned challenges, this paper
introduces the FCToken framework, meticulously designed to facilitate compliance tokenization across diverse
scenarios and asset types. Innovatively, the framework operates at both the Token and Identity levels, encompassing
four core modules to actualize compliance token issuance. Leveraging this framework, we have devised a prototype
system, integrating both a GUI low-code module and a gas fee prediction mechanism. Such integrations not only
bolster compliance-centric development efficiency but also proffer users methodologies to curtail gas expenditures

during the token issuance process.

Published in: 2023 IEEE International Conference on Data Mining Workshops (ICDMW)

Date of Conference: 01-04 December 2023 DOI: 10.1109/ICDMW60847.2023.00093

Date Added to IEEE Xplore: 06 February 2024 Publisher: IEEE
» ISBN Information: Conference Location: Shanghai, China

v ISSN Information:

I. Introduction
Blockchain technology has revolutionized various sectors by offering unparalleled transparency, security, and

of its most impactful a f tokenizat whic volves convert
ign in to Continue Reading

Authors v
Figures v
References v
Keywords v
Metrics v
Footnotes v

Purchase Details Profile Information Need Help?

‘COMMUNICATIONS PREFERENCES US & CANADA: +1 800 678 4333

PROFESSION AND EDUCATION

PAYMENT OPTIONS
VIEW PURCHASED DOCUMENTS WORLDWIDE: +1 732 981 0060

TECHNICAL INTERESTS CONTACT & SUPPORT

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | IEEE Ethics Reporting (£ | Sitemap | IEEE Privacy Policy
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2024 IEEE - All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies.

Estate Transactions with
Blockchain Technology

2024 Intemational Conference on
Inventive Computation Technologies.
(cicn

Published: 2024

Prototype Blockchain Based
Smart Contract For Freelance
Marketplace System

2021 Sixth International Conference on

Informatics and Computing (ICIC)
Published: 2021

Show More

Follow

fOinO

https://ieeexplore.ieee.org/document/10411565
https://ieeexplore.ieee.org/document/10411565

CN 113314136 A

(19) shie A R HFEEREE =5
: ,‘p (12) £ A& FiERIE
‘*

(10) BBiIFA#HS CN 113314136 A
(43) RIFAFHHE 2021. 08. 27

(21) BiFS 202110587258.6
(22) BBiFH 2021.05.27

TN BRIFEAN LR TRENF
Hulib 710126 Bk P4 P4 22T P4 R TR

RFR U
(72) ZBAAN &G RIRE FEPT OMER
BB

(74) T FUKEBANAD b5 i AE B AR = AU C
F1HH Gtk 11814
KEBA X5
(51) Int.CI .
G10L 21/0208 (2013.01)
G10L 25/30(2013.01)
G10L 25/60(2013.01)

MAERF2R HBAFER EZR

(54) % BB &R

HEF 5) P IR T S SRR R 1475 & 4k
T
(57) HE

A B A — B T 5 1V B R T AR B,
AR & RAL 2, 1% AR AR R S1
L 5 S2 3 E SUE R A 5 S3 R R FE AT
A B R B R M 4 5S4 ik
1775 3 B0 AR R I RENS B X T VAN RS
AN B3 S AT R , KORIRF T PR 2R .

I <22260229@zju.edu.cn> -

Fwd: [LKM@IJCAI2024] Notification for Paper Proceedings & Presentation
ttatF7H20 12:448 Bysz22,

ZBERY v

A1 A: Microsoft CMT <email@msr-cmt.org>

HHA: 202456 529H GMT+8 17:26:59

I A: hao tan <tttat@zju.edu.cn>

ZE8: [LKM@IJCAI2024] Notification for Paper P! di &P

Dear hao tan,

Congratulations again for the acceptance of your paper:

16 Structured knowledge injection and reasoning prompting for compliance on-chain asset analysis
at LKM2024: The First International OpenKG Workshop Large Knowledge-Enhanced Models @IJCAI 2024.
For archival paper proceedings:

Apologies for the delay in coordinating with the journal. We will soon open a submission channel for the recommended journal (Data Intelligence). The papers will u
ndergo rapid peer review and be published in the proceedings (EI index).

For non-archival paper proceedings:

Please send us an online link (e.g., ArXiv) of your paper, and we will put the link on the website.
For presentation:

1.Registration can be workshop only.

2.Papers can be presented in two formats: poster or oral presentation. We will send the notification of poster and oral selection in the next week. We recommend th
at papers selected for oral presentation also prepare a poster to facilitate discussion.

3.0ral presentation is 1@min for each paper, we recommend to present onsite, detailed schedule will be online in the next week at https://1km2024.openkg.org/.

4. The poster can be any format, we recommend to use the size "24 inches wide x 36 inches high" in portrait orientation. Posters can be picked up and set up at 1
0:30-11:00 & 11:30-12:00 & 15:30-16:00 in the workshop rooms.

In LKM@IJCAI2024, we will have keynotes & invited talks from the University of Texas at Austin, Tsinghua University, Southeast University, Beijing University of Po
sts and Telecommunications and Ant Group.

Looking forward to meeting you in Jeju, South Korea, August 3!
Any questions, contact: zhangningyu@zju.edu.cn
Sincerely,

LKM 2024 Program Chairs

To stop receiving conference emails, you can check the 'Do not send me conference email' box from your User Profile.

Microsoft respects your privacy. To learn more, please read our Privacy Statement.

Microsoft Corporation A

One Microsoft Way e
Redmond, WA 98052

GEE wEHERH - HR

Structured Knowledge Injection and Reasoning Prompting for
Compliance On-chain Asset Analysis

Hao Tan'*, Shuangzhou Yan'*

, Hongxin Zhang'’, Zhuo Li*

1Zhejiang University
2State Street Technology (Zhejiang) Ltd.
{tttat, ysz22, zhx, lizhuo} @zju.edu.cn,

Abstract

The integration of Domain-Specific Lan-
guages (DSL) with Large Language Mod-
els (LLM) offers an innovative approach
to addressing complex problems within
specific domains. This paper proposes
the method of structured knowledge injec-
tion and reasoning prompting, and con-
ducts experimental analysis on the task
of compliance on-chain asset analysis.
DSL, as a specialized form of knowl-
edge representation, is tightly coupled
with domain-specific terminology, allow-
ing expert knowledge to be presented in
a structured form. Leveraging the ad-
vantages of DSL in knowledge represen-
tation, we propose its combination with
LLMs to enhance the model’s capability
to handle complex tasks within specific
domains. In this paper, we provide a de-
tailed explanation of our method’s appli-
cation to solving the complex task of on-
chain compliance asset analysis. Com-
pared to traditional LLM prompting meth-
ods, our approach shows significant im-
provements in key metrics.

1 Introduction

Recently, there has been notable advancement in the
field of natural language processing thanks to the de-
velopment of large language models (LLMs). LLMs
are commonly trained on large volumes of internet
text data, allowing them can easily adapt to diverse

*Both authors contributed equally to this research.
fCorresponding authors.

tasks in various domains without needing special-
ized data for each task.

The design of prompts is essential in the process
of adapting pre-trained LLMs to new tasks with lim-
ited or no task-specific training data. By employ-
ing prompt engineering techniques, these models are
able to outperform in a wide range of jobs and fields.
In contrast to traditional paradigms, which usually
need model retraining or substantial fine-tuning to
obtain performance on specific tasks, this adaptabil-
ity stands out

Analysis of smart contracts for on-chain compli-
ance tokens is a real problem in the production pro-
cess. On-chain financial assets typically possess
hundreds of financial attributes and various compli-
ance rule clauses. Unlike traditional financial prod-
ucts, financial domain experts analyzing on-chain
compliance assets need to read and understand So-
lidity code and combine it with financial domain
knowledge to analyze on-chain financial products.
This task comprises multiple sub-tasks such as un-
derstanding Solidity code, extracting financial at-
tributes, and reasoning about different compliance
clauses. Indeed, in real-life situations, there are nu-
merous domain-specific tasks that have similarities
and are characterized by complexity and strict lim-
itations. In order to tackle these issues, we suggest
implementing a method called structured knowledge
injection and reasoning prompt for LLMs. This
approach entails the injection of DSL syntax into
LLMs and the utilization of specialized syntax and
DSL to facilitate the handling of intricate restrictions
and task solutions by LLM:s.

The justification for utilizing DSL is grounded
in the research conducted by [Decker, 1998] and
[Seipel er al., 2018]. These scholars propose that
DSL, with their syntax closely aligned with domain-

specific terminology, offer a more adaptable means
of representing expert knowledge. DSL function as
a means of KR (knowledge representing) and also
improve the ability to execute knowledge, enabling
the organization and formalization of unstructured
knowledge. Given the benefits of DSL in organiz-
ing knowledge and handling intricate restrictions,
we suggest integrating DSL with LLMs.

Role Definition
Task constraints

DSL syntax in BNF format for domain-specific
tasks

A sample that includes input, BNF-specific
syntax, and output DSL

Task Input

e

LLM

<=

Specialized Grammar in BNF:
Specialized grammar generated by LLM

DSL:
DSL generated based on Specialized Grammar

v
DSL Compiler | «:«,

I Memetic proxy [l Constaining behavior [l sigifier [l input

Figure 1: Architecture of “’structured knowledge injection
and reasoning prompting”

Our approach involves encoding domain knowl-
edge as a DSL and designing its syntax using the
Backus-Naur Form (BNF)[McCracken and Reilly,
2003] representation. LLM incorporates structured
knowledge, specifically the BNF syntax paradigm,
throughout task execution. A specialized subset of
BNF syntax is utilized as intermediate reasoning
steps and restrictions. Ultimately, we generate the
outcome in DSL format, which is then handed over
to an external DSL compiler for the purpose of pars-
ing and resolving certain issues. The structure of our
strategy is depicted in Figure 1.

In order to evaluate the enhancement in perfor-

mance of our method in problem-solving, we gen-
erated a dataset specifically designed for analyzing
on-chain compliance token smart contracts. The
dataset comprises 200 compliance token smart con-
tracts, each representing a different type. Each con-
tract corresponds to an on-chain asset that possesses
a minimum of 30 distinct financial qualities. Addi-
tionally, there are 20 unique compliance rules and at
least 8 user admission conditions within each con-
tract. Furthermore, each contract is composed of
at least four sub-contracts. We have developed five
distinct measures to evaluate the quality of the out-
comes produced by LLM, including both broad and
detailed viewpoints.

In particular, we investigated the utilization of
GPT models gpt-3.5-turbo, gpt-4 and ChatCLM
model chatglm3-turbo for analyzing on-chain assets,
and we compared their performance against differ-
ent reference points. Empirical findings demonstrate
that our approach substantially improves the capac-
ity of all algorithms to assess on-chain compliance
token smart contracts. The effectiveness of our ap-
proach showcases the immense capability of utiliz-
ing the inherent information within LLMs for intri-
cate task reasoning, achieved through a meticulously
crafted fundamental structure and prompts specifi-
cally tailored for LLMs.

This achievement demonstrates that the applica-
tion of structured knowledge injection and reason-
ing prompt approach for LLMs is highly effective
in resolving intricate difficulties within specified do-
mains.

2 Blockchain, Solidity and Compliance
Token

Blockchain is a distributed ledger technology
that connects data through blocks, creating
an immutable, transparent, and decentralized
database [Bhutta et al., 2021]. Blockchain technol-
ogy ensures data consistency and trustworthiness
through a consensus mechanism.

Smart contracts represent automated contracts ex-
ecuted on the blockchain. They facilitate trustwor-
thy, secure, and transparent transactions and con-
tract executions. Smart contracts are written using
Solidity, a high-level programming language that
is specifically designed for creating smart contracts
and is widely used on Ethereum. Solidity can de-
fine the state and behavior of contracts and interact
with other contracts. It is the most commonly used
language for writing smart contracts at present.

Compliance tokens are a form of regulated secu-
rities issued using blockchain technology. These to-
kens can represent shares, bonds, real estate, and
other real assets, traded and held via the blockchain.
Examining compliance tokens and their correspond-
ing smart contracts is essential in contemporary
financial and technical settings.Compliance analy-
sis assists firms in discovering and capitalising on
emerging blockchain and smart contract prospects
while complying with rules, thereby facilitating
worldwide expansion and fostering innovation.

3 Related Work

GPT-3[Brown et al., 2020] demonstrated a strong
capability to perform few-shot predictions, where
the model is given a description of the task in nat-
ural language with few examples. Scaling model
size, data, and computing are crucial to enable this
learning ability.[Rae ef al., 2021; Smith et al., 2022;
Chowdhery et al., 2023; Dua et al., 2019] have re-
cently suggested training diverse types of LLMs us-
ing distinct training techniques. Smaller language
models lack the capability to tackle new tasks by
learning from a small number of examples. This
ability only becomes apparent when the size of
the model is raised, as stated by [Kaplan er al.,
2020]. In recent times, a number of studies [Xie
et al., 2023; Work,]) have focused on comprehend-
ing the mechanisms and rationales behind in-context
learning. Another study is BINDER [Cheng et
al., 2022], which employs Codex to generate “soft”
SQL queries for responding to inquiries based on ta-
bles.

Chain-of-thought prompting: Although LLMs
have shown significant success in various natural
language processing tasks, their reasoning capa-
bilities are often seen as a limitation. Recently,
Chain-of-Thought (CoT) reasoning[Wei et al., 2022;
Kojima et al., 2022; Wang et al., 2022] has been
proposed to enhance LLMs’ ability to perform rea-
soning tasks by demonstrating the “reasoning pro-
cess in natural language.” [Suzgun er al., 2022]have
shown that CoT can surpass human performance on
challenging BIG-Bench tasks. Subsequently, sev-
eral other studies [Drozdov er al., 2022; Nye et al.,
2021] have proposed different methods to leverage
LLMs for reasoning tasks by allowing intermediate
steps. ReAct[Yao et al.,, 2022] suggests enhanc-
ing LLMs’ reasoning capabilities by utilizing ex-
ternal tools such as search engines. [Chen et al.,
2022] have proposed “Program of Thoughts” (PoT),
a novel prompting method that generates program

Asset

Type System

Property

Management

Role

Compliance

Figure 2: Syntactic Definition of our DSL

code to express reasoning steps and delegates com-
putational tasks to a program interpreter, effectively
separating the reasoning and computation processes.

LLMs for program generation and semantic pars-
ing: Generating programs from natural language
specifications, often referred to as semantic parsing,
is a sub-problem of program synthesis. [Austin et
al., 2021; Xu et al., 2022] have explored methods
for using LLMs to generate code in general pro-
gramming languages (e.g., Python). There is also
work on using LLMs for tool usage through fur-
ther training[Schick et al., 2024] or prompting[Qin
etal.,2023; Wang et al., 2023] , studying how model
size[Qiu et al., 2022] and retrievers[Ye et al., 2020;
Levy et al., 2022] affect in-context learning, seman-
tic parsing, and constrained decoding in program
generation[Scholak er al., 2021; Poesia et al., 2022].

4 Methodology

4.1 Design Principles and Syntax of DSL

Our approach uses LLM to collect and analyze on-
chain token issuance data, identifying key frame-
works and trends without domain experts. LLM’s
language and pattern recognition capabilities enable
efficient analysis of complex on-chain data.

For data labeling, we use top market cap tokens
and NFTs from Etherscan and Cryptoslam, respec-
tively, resulting in 975 smart contracts and 14,200
functions after data cleansing. We analyze these
contracts to identify common features and compo-
nents for DSL design.

We process the source code using GPT-4[Achiam
et al., 2023] and standardize outputs through prompt

LLM Prompt

#ROLE

You are an expert programmer, and you need to write the DSL(Domain speific language) for the given Solidity code. First, you should write a grammar
that contains all the necessary BNF rules. Then, you should write DSL that conform to your predicted rules.

e t_symbol " (constant_type_statement property_statement management_statement| role_statement |
#RESPONSE_FORMAT
BNF_grammar_rules: str, A grammar generated from Solidity code that contains all the necessary Backus-Naur Form rules.
DSL: str, Generated DSL based on the BNF grammar rules
LLM Output
BNF_grammar_rules:
Asset_Token :i= * Asset_name> "," <Asset_symbol> "{" (constant_type_statement | property_statement | management_statement | role_statement |
compliance_statement) "}" g
DSL:
Asset (Asset, AST) { Property AST_financial {...}.
Management AST_actions {...}
Role AST_role {...}
Compliance AST_rules {...}
¥ y

Figure 3: Examples of our prompting method. G represents for the entire DSL grammar, g represents for the specific
subset of grammar and y represents for the matching specialized DSL

engineering. A JSON label structure captures code
structure, roles, functions, and compilation versions.
Analyzing 975 smart contracts, we identify 2,447
unique functions after removing duplicates. Us-
ing vectorization and DBSCAN clustering, we cat-
egorize the top 20 frequent functions into five cat-
egories: Token Management, Permission Control,
Contract Upgrading, Contract Framework Construc-
tion, and Mathematical Calculation. Essential func-
tions include transfer, transferFrom, approve, bal-
anceOf, allowance, totalSupply, burn, mint, trans-
ferownership, and constructor.

We specify the grammar in our DSL using the
BNF. Figure 2 illustrates the syntactic definition of
our DSL. Compliance assets, designated as Asset,
have a structure similar to a class in object-oriented
programming. When designing an Asset, the name
and symbol must be specified. Each Asset includes
the setup of static variables and the execution of sev-
eral modules, such as:

* Type System: Includes Claim and Token.
Claim represents qualifications like compliance
standards. We manage a database for setting
and assigning Claim details in DSL. Token is
similar to the address type in Solidity and is

used for ERC20 asset configuration.

* Property: Includes financial asset details such
as admittance fee or notional price. Time-
related attributes are represented by the date
variable.

* Management: Manages on-chain asset be-
havior, defining actions like asset purchase
and margin calls. Key actions include Trans,
TransF, Mintable, and Burnable.

* Role: Represents participants in the compli-
ance token market, setting regulatory limita-
tions and specifying eligible groups.

e Compliance: Involves adding compliance
clauses to the asset. A compliance clause in-
cludes a role condition, asset condition, time
condition, and action, defining when specific
actions can occur.

4.2 Thought with Specific Knowledge
Representation

To address intricate challenges, we propose a novel
approach called Prompt Engineering based on Struc-
tural Knowledge Injection and Reasoning, which

enhances the learning process in the LLM envi-
ronment. In order to improve LLM’s proficiency
in numerical reasoning, PoT transforms the logical
processes of reasoning into Python code that can
be executed, effectively separating the process of
reasoning from the computational aspect of solv-
ing mathematical issues. SCoT aims to transform
the intermediate reasoning processes of CoT into
structured source code, which allows LLM to pro-
duce code with greater precision. The primary aim
of the study is to enhance LLM’s capabilities in
numerical computation and code generation using
the GPL(general-purpose programming language),
specifically the Python scripting language. Never-
theless, when confronted with intricate practical is-
sues, these solutions are not suitable.

However, drawing inspiration from these ap-
proaches, given that the introduction of General Pur-
pose Languages (GPL) is insufficient for solving the
majority of jobs, it would be advantageous to con-
sider implementing DSL tailored to specific tasks
in order to efficiently address intricate difficulties.
According to Wang et al’s findings in Grammar
Prompt, LLM demonstrates exceptional proficiency
in both utilizing and creating DSL. It can showcase
strong capabilities for many DSL.

Therefore, we propose a Prompt method: struc-
tured knowledge injection and reasoning prompt-
ing.Instead of using PoT/SCoT, our approach in-
volves creating customized DSL and their related
DSL grammars tailored to specific activities. Dur-
ing the process of reasoning in LLM, we include
the entire DSL grammar G into the context of LLM.
Meanwhile, during the output phase of the LLM, we
allow LLM to make predictions for a specific subset
of grammar, called g, based on the user’s request.
This subset is a part of the set G. Subsequently, with
the anticipated subset g, LLM generates the match-
ing specialized DSL y. Ultimately, we employ a
DSL encoder S to analyze y and acquire the ulti-
mate outcome of the task. The method’s structure
is depicted in Figure 1. Our method primarily con-
sists of four components: DSL Grammar Injection
under BNF Paradigm, Specialized Grammar Gener-
ation, DSL Generation, and Examples. An example
of a Prompt is illustrated in Figure 3.

Our approach strictly follows the prompt princi-
ples outlined by Reynolds and McDonell (2021),
which encompass the following: Signifier: A sig-
nifier is a pattern which keys the intended behavior.
Memetic proxy: A memetic proxy is a concept in
which a character or characteristic situation is used

Table 1: Contract Categorization Rules

Level Number of Financial Attributes
Simple 30-70
Medium 71-110
Difficult 111-150

as a proxy for an intention. Constraining behavior:
In addition to directing the LLM on the desirable re-
sponse. Meta prompting: A meta prompt is a short
phrase or a fill-in-the-blank template encapsulat-ing
a more general intention that will unfold into a more
specific prompt when combined with ad-ditional in-
formation. First, we require the LLM to assume the
role of a programming expert and define its task.
Subsequently, we impose limitations on the LLM’s
conduct within the given Prompt. These constraints
are unrelated to the DSL Grammar and are typi-
cally designed according to the specific task context.
Next, we incorporate the BNF paradigm DSL gram-
mar, typically opting for the entire DSL grammar
to empower the LLM in producing a more precise
specialized grammar subset. To further improve the
LLM’s compliance with instructions, we incorporate
illustrations.

S Experiments

5.1 Experiment set up

Dataset: In our analysis of compliance token
smart contracts, we have compiled a corresponding
dataset. This dataset consists of 200 on-chain com-
pliance token smart contracts with different levels
of complexity. It also includes their corresponding
DSL code. The purpose of this dataset is to evaluate
the LLM’s ability to analyze on-chain compliance
tokens. The complexity of the smart contracts in the
collection is determined by the quantity of financial
attributes. The analysis difficulty of these compli-
ance contracts has been classified into three levels:
simple, medium, and difficult. Table 1 outlines the
criteria used to classify the contracts into different
levels.

We conducted an experiment to evaluate the ef-
fectiveness of several methods in completing tasks
of different levels of complexity.

Baseline: Our findings comprise three different
models, including gpt-3.5-turbo, gpt-4, and chat-
glm3. We examine two prediction strategies: the
normal prompt technique, which produces results
by specifying the output format, called STD in
short and the chain of thought prompt approach,

which generates results through sequential reason-
ing, called COT in short.

Implementation Details: For our experiment,
we predominantly utilized the OpenAl API and
the ChatGLM API. Our approach involved utilizing
the LLM to generate DSL code, which was subse-
quently processed by an external DSL parsing tool
to generate the ultimate compliance asset analysis
report. The LLM output for the STD and COT tech-
niques was provided in a predefined JSON format.

In order to accommodate few-shot scenarios, we
have incorporated specific example types for various
procedures. Our method involves utilizing input So-
lidity code, specialized DSL Grammar for the input
code, and generating DSL code based on the DSL
Grammar. The STD and COT methods supplied ex-
amples that consisted of Solidity code as input and
the matching JSON format as output. Employing
enhanced output instructions aids the model in com-
prehending the designated output format more ef-
fectively. Thus, in order to strengthen the output re-
quirements of the LLM, we included a #RESPONSE
FORMAT prompt for each method to provide a con-
sistent format for the LLM’s output.

Metric Design:

For the task of analyzing compliance token smart
contracts, we have designed detailed metrics to eval-
uate performance from both macro and micro di-
mensions. The definitions and calculation formulas
for each measure are as follows:

* FAA: Financial Attribute Accuracy (Macro)
* KCAR: KYC Clause Accuracy Rate (Macro)

* UACIA: User Admission Clause Identification
Accuracy (Micro)

* ARCIA: Asset Requirement Clause Identifica-
tion Accuracy (Micro)

e TRICA: Time-Related Clause Identification
Accuracy (Micro)

5.2 Main Result

Main Results Table 2 presents our results on the
complete dataset, while Tables 2-4 showcase com-
parisons of various methods across different mod-
els on datasets of varying difficulty levels. In terms
of the KCAR metric, for the gpt-3.5-turbo model,
our method increased the number of correctly iden-
tified instances from nearly 300 to over 2100; for the
gpt-4 model and the chatgl. M-3-turbo model, per-
formance improved by 15.0% and 48.5%, respec-
tively. The significant enhancements on GPT-3.5

and ChatGLM stem from the nature of the KCAR
metric, which requires LLMs to extract user quali-
fication numbers from Solidity smart contract code
and cross-reference them with a provided qualifica-
tion list. Our method effectively determines qual-
ification numbers based on DSL syntax constraints
and accurately corresponds qualification clauses by
leveraging a DSL compilation tool, resulting in a
marked performance improvement. For the UACA
metric, our method compared to the other two meth-
ods achieved improvements of over 87.3%/ranking
first/58.5% . Regarding the ARICA task, our method
demonstrated significant performance gains. The
baseline methods failed to accurately identify any
compliance clauses related to assets in gpt-3.5-
turbo and gpt-4 models, whereas our method suc-
cessfully identified 28.7% and 55.7% of the data,
respectively. Due to the performance limitations
of chatglm3-turbo, our method’s improvement was
modest, with an accuracy of 0.4% compared to
CoT’s 0.3%. This discrepancy arises because the
ARICA task involves extracting compliance clauses
related to user-held assets, including the recognition
of fund amounts and currency types. Many on-chain
asset currencies may not be present in the LLM’s
pre-training data, such as newly introduced tokens
like MNT, FET, and PEPE. As a result, LLMs may
fail to recognize them. However, our method can ac-
curately identify asset quantities and currency types
through DSL syntax constraints.

Omission in responses For the FAA and TRCIA
metrics, our method did not achieve notable im-
provements. Consequently, we conducted a more
detailed analysis of the experimental data.

As introduced in Section 5.1, we categorized the
data in our dataset into three levels of complexity:
simple, medium, and difficult. We utilized the gpt-
3.5-turbo model to analyze the performance across
these three dataset levels, with results shown in Ta-
ble 3.

It is evident that our method achieved the best re-
sults across all metrics in the simple-level data, with
significant performance improvements. However,
for medium and difficult levels, our method under-
performed compared to the other two methods in the
FAA metric (financial attribute identification) and
the TRCIA metric (time compliance clause identi-
fication). Analysis of the LLM outputs revealed the
issue: when handling large data volumes, the mod-
els exhibited ”lazy” behavior, using ...” to replace
complete answers, leading to incomplete outputs.
Approximately 20% of the responses showed such

Table 2: Experiment result for different method and dif-
ferent model

Table 4: Experiment Results Comparing Zero-shot and
One-shot Performance of Our Method Using GPT-3.5

Config FAA KCAR UACA ARICA TRICA Config FAA KCAR UACA ARICA TRICA
G3.5-STD 0.795 0.121 0.324 0.006 0.186 Zero-shot 0.715 0.000 0.507 0.275 0.330
G3.5-COT 0.790 0.114 0.293 0.006 0.212 One-shot 0.784 0.686 0.607 0.288 0.186
G3.5-Ours 0.784 0.686 0.607 0.288 0.186
G4-STD 0.746 0.505 0448 0.000 0.469 Table 5: Results for molecule generation
G4-COT 0.767 0.468 0.638 0.001 0.735
G4-Ours 0.571 0.580 0.638 0.557 0.548

Method v D R M
C3-STD 0.792 0.235 0.224 0.000 0.257 -
C3-COT 0.787 0230 0.115 0.003 0.086 LLM with DSL 98 074 91.0 933
C3-Ours 0366 0349 0355 0.004 0.207 Standard Prompting 87.7 0.73 80.0 76.7

Note: G3.5 denotes GPT-3.5, G4 denotes GPT-4, and
C3 denotes ChatGLM-3.

omissions, with only 3% occurring in simple data
and over 30 instances in medium and difficult data.
This is due to the complexity of generating BNF
DSL syntax outputs for our method; complex data
outputs led LLMs to perceive data types as repeti-
tive, resulting in self-omissions.

Zero-shot Results Lastly, we evaluated the zero-
shot performance of our method, comparing it with
one-shot in Table 4. It is clear that our method
heavily relies on sample setups; the absence of sam-
ples significantly degrades performance. Despite
providing DSL syntax in the outputs, the relation-
ship between DSL syntax and its conversion re-
mains complex, necessitating designed examples to
prompt conversion rules effectively.

Table 3: Performance Comparison of GPT-3.5-turbo
Across Different Dataset Levels

Method FAA KCAR UACA ARICA TRICA
Simple

STD 0.797 0.102 0.325 0.047 0.196

COT 0.807 0.128 0.268 0.006 0.193

Ours 0942 0.710 0.720 0349 0.212
Medium

STD 0.811 0.128 0.346 0.011 0.214

COT 0.797 0.116 0.282 0.005 0.183

Ours 0.751 0.696 0.636 0.280 0.194
Difficult

STD 0.784 0.140 0.304 0.001 0.154

COT 0.784 0.096 0.330 0.008 0.256

Ours 0.734 0.648 0.454 0.225 0.150

Note: The metrics are validity (V), diversity (D), ret-
rosynthesis score (R) and membership (M). Higher is
better for all metrics.

5.3 More Than Solidity Code Analysis

Ultimately, our objective is to prove, using appropri-
ate experimental data, that our method can be used
not only for code analysis jobs but also for a wide
range of other activities with favorable outcomes.
As an illustration, we chose the problem of pro-
ducing distinct kinds of molecules. The empirical
data is derived from Grammar Prompting[Wang et
al., 2024]. The result on molecule class belongs to
Acrylates was shown in Table 5

6 Conclusion and Future Work

This work explores the utilization of DSL and
DSL syntax as structural knowledge to augment the
problem-solving capabilities of LLMs for compli-
cated tasks. In the task of compliance token anal-
ysis, our method demonstrates a leading advantage
across multiple metrics.DSL,and its syntax, which is
described in Backus-Naur Form, are utilized as spe-
cific techniques for representing knowledge. They
not only act as tools for knowledge representation
but also enhance the executability of knowledge,
allowing unstructured knowledge to be structured
and formalized. This enhances the adaptable de-
piction of knowledge appropriate to a certain do-
main. [Austin et al., 2021] introduced a framework
for DSL that is based on ontology. This frame-
work enables the DSL to undergo dynamic modifi-
cations, thus accommodating advancements. In the
future, we will investigate the incorporation of dy-
namic DSL with LLMs to consistently enhance the
problem-solving capacities of LLMs.

References

[Achiam et al., 2023] Josh Achiam, Steven Adler,
Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko
Altenschmidt, Sam Altman, Shyamal Anadkat,
et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[Austin et al., 2021] Jacob Austin, Augustus
Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie
Cai, Michael Terry, Quoc Le, et al. Program
synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

[Bhutta et al., 2021] Muhammad Nasir Mumtaz
Bhutta, Amir A. Khwaja, Adnan Nadeem,
Hafiz Farooq Ahmad, Muhammad Khurram
Khan, Moataz A. Hanif, Houbing Song, Majed
Alshamari, and Yue Cao. A survey on blockchain
technology: Evolution, architecture and security.
IEEE Access, 9:61048-61073, 2021.

[Brown et al., 2020] TB Brown, B Mann, N Ryder,
M Subbiah, JD Kaplan, P Dhariwal, A Neelakan-
tan, P Shyam, G Sastry, A Askell, et al. Language
models are few-shot learners advances in neural
information processing systems 33. 2020.

[Chen et al., 2022] Wenhu Chen, Xueguang Ma,
Xinyi Wang, and William W Cohen. Program of
thoughts prompting: Disentangling computation
from reasoning for numerical reasoning tasks.
arXiv preprint arXiv:2211.12588, 2022.

[Cheng et al., 2022] Zhoujun Cheng, Tianbao Xie,
Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi
Hu, Caiming Xiong, Dragomir Radev, Mari Os-
tendorf, Luke Zettlemoyer, et al. Binding lan-

guage models in symbolic languages. arXiv
preprint arXiv:2210.02875, 2022.
[Chowdhery et al., 2023] Aakanksha Chowdhery,

Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine
Learning Research, 24(240):1-113, 2023.

[Decker, 1998] Stefan Decker. On domain-specific
declarative knowledge representation and
database languages. In KRDB-98—Proceedings
of the 5th Workshop Knowledge Representation
meets DataBases, Seattle, WA, 1998.

[Drozdov et al., 2022] Andrew Drozdov, Nathanael
Schirli, Ekin Akyiirek, Nathan Scales, Xiny-
ing Song, Xinyun Chen, Olivier Bousquet, and
Denny Zhou. Compositional semantic parsing
with large language models. In The Eleventh In-
ternational Conference on Learning Representa-
tions, 2022.

[Dua et al., 2019] Dheeru Dua, Yizhong Wang,
Pradeep Dasigi, Gabriel Stanovsky, Sameer
Singh, and Matt Gardner. Drop: A read-
ing comprehension benchmark requiring dis-

crete reasoning over paragraphs. arXiv preprint
arXiv:1903.00161, 2019.

[Kaplan et al., 2020] Jared Kaplan, Sam McCan-
dlish, Tom Henighan, Tom B Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Rad-
ford, Jeffrey Wu, and Dario Amodei. Scaling
laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[Kojima et al., 2022] Takeshi Kojima, Shixi-
ang Shane Gu, Machel Reid, Yutaka Matsuo,
and Yusuke Iwasawa. Large language models
are zero-shot reasoners. Advances in neural in-
formation processing systems, 35:22199-22213,
2022.

[Levy ef al., 2022] Itay Levy, Ben Bogin, and
Jonathan Berant. Diverse demonstrations im-
prove in-context compositional generalization.
arXiv preprint arXiv:2212.06800, 2022.

[McCracken and Reilly, 2003] Daniel D Mc-
Cracken and Edwin D Reilly. Backus-naur form
(bnf). In Encyclopedia of Computer Science,
pages 129-131. 2003.

[Nye et al., 2021] Maxwell Nye, Anders Johan An-
dreassen, Guy Gur-Ari, Henryk Michalewski, Ja-
cob Austin, David Bieber, David Dohan, Aitor
Lewkowycz, Maarten Bosma, David Luan, et al.
Show your work: Scratchpads for intermedi-

ate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.
[Poesia et al., 2022] Gabriel Poesia, Oleksandr

Polozov, Vu Le, Ashish Tiwari, Gustavo Soares,
Christopher Meek, and Sumit Gulwani. Syn-
chromesh: Reliable code generation from
pre-trained language models. arXiv preprint
arXiv:2201.11227,2022.

[Qin er al., 2023] Yujia Qin, Shengding Hu, Yankai
Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni
Zeng, Yufei Huang, Chaojun Xiao, Chi Han, et al.

Tool learning with foundation models. arXiv

preprint arXiv:2304.08354, 2023.

[Qiu er al., 2022] Linlu Qiu, Peter Shaw, Panupong
Pasupat, Tianze Shi, Jonathan Herzig, Emily
Pitler, Fei Sha, and Kiristina Toutanova. Eval-
uating the impact of model scale for composi-

tional generalization in semantic parsing. arXiv
preprint arXiv:2205.12253, 2022.

[Rae er al., 2021] Jack W Rae, Sebastian Borgeaud,
Trevor Cai, Katie Millican, Jordan Hoffmann,
Francis Song, John Aslanides, Sarah Hender-
son, Roman Ring, Susannah Young, et al. Scal-
ing language models: Methods, analysis & in-
sights from training gopher. arXiv preprint
arXiv:2112.11446, 2021.

[Schick et al., 2024] Timo Schick, Jane Dwivedi-
Yu, Roberto Dessi, Roberta Raileanu, Maria
Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. Toolformer:
Language models can teach themselves to use
tools. Advances in Neural Information Process-
ing Systems, 36, 2024.

[Scholak et al., 2021] Torsten Scholak, Nathan
Schucher, and Dzmitry Bahdanau. Picard: Pars-
ing incrementally for constrained auto-regressive

decoding from language models. arXiv preprint
arXiv:2109.05093, 2021.

[Seipel et al., 2018] Dietmar Seipel, Falco Nogatz,
and Salvador Abreu. Domain-specific languages
in prolog for declarative expert knowledge in
rules and ontologies. Computer languages, sys-
tems & structures, 51:102—-117, 2018.

[Smith ef al., 2022] Shaden Smith, Mostofa Pat-
wary, Brandon Norick, Patrick LeGresley,
Samyam Rajbhandari, Jared Casper, Zhun Liu,
Shrimai Prabhumoye, George Zerveas, Vijay Ko-
rthikanti, et al. Using deepspeed and mega-
tron to train megatron-turing nlg 530b, a large-
scale generative language model. arXiv preprint
arXiv:2201.11990, 2022.

[Suzgun et al., 2022] Mirac ~ Suzgun, Nathan
Scales, Nathanael Schirli, Sebastian Gehrmann,
Yi Tay, Hyung Won Chung, Aakanksha Chowd-
hery, Quoc V Le, Ed H Chi, Denny Zhou,
et al. Challenging big-bench tasks and whether
chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

[Wang et al., 2022] Xuezhi Wang, Jason Wei, Dale
Schuurmans, Quoc Le, Ed Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. Self-
consistency improves chain of thought rea-
soning in language models. arXiv preprint
arXiv:2203.11171,2022.

[Wang et al., 2023] Guanzhi Wang, Yuqi Xie, Yun-
fan Jiang, Ajay Mandlekar, Chaowei Xiao,
Yuke Zhu, Linxi Fan, and Anima Anandku-
mar. Voyager: An open-ended embodied agent

with large language models. arXiv preprint
arXiv:2305.16291, 2023.

[Wang et al., 2024] Bailin Wang, Zi Wang, Xuezhi
Wang, Yuan Cao, Rif A Saurous, and Yoon
Kim. Grammar prompting for domain-specific
language generation with large language models.

Advances in Neural Information Processing Sys-
tems, 36, 2024.

[Wei er al., 2022] Jason Wei, Xuezhi Wang, Dale
Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. Chain-of-
thought prompting elicits reasoning in large lan-
guage models. Advances in neural information
processing systems, 35:24824-24837, 2022.

[Work,] What Makes In-Context Learning Work.
Rethinking the role of demonstrations: What
makes in-context learning work?

[Xie et al., 2023] Yuxi Xie, Kenji Kawaguchi, Yi-
ran Zhao, Xu Zhao, Min-Yen Kan, Junxian He,
and Qizhe Xie. Decomposition enhances reason-
ing via self-evaluation guided decoding. arXiv
preprint arXiv:2305.00633, 2023.

[Xu et al., 2022] Frank F Xu, Uri Alon, Graham
Neubig, and Vincent Josua Hellendoorn. A sys-
tematic evaluation of large language models of
code. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Program-
ming, pages 1-10, 2022.

[Yao er al., 2022] Shunyu Yao, Jeffrey Zhao, Dian
Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. React: Synergizing reasoning

and acting in language models. arXiv preprint
arXiv:2210.03629, 2022.

[Ye et al., 2020] Xi Ye, Qiaochu Chen, Isil Dillig,
and Greg Durrett. Benchmarking multimodal
regex synthesis with complex structures. arXiv
preprint arXiv:2005.00663, 2020.

