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一、个人申报
（一）基本情况【围绕《浙江工程师学院（浙江大学工程师学院）工程类专业学位研究生工

程师职称评审参考指标》，结合该专业类别(领域)工程师职称评审相关标准，举例说明】

1.对本专业基础理论知识和专业技术知识掌握情况(不少于200字)

在智能科学与技术及计算机科学与技术领域展现了扎实的理论基础与专业技术能力。大学本

科期间，其专业成绩位列前3/310，系统掌握了人工智能、机器学习、区块链等核心课程知

识。硕士阶段进入浙江大学CAD&CG国家重点实验室，研究方向聚焦大语言模型（LLM）与智

能体（Agent），深入研究了分布式系统、智能合约设计与合规性管理等前沿技术。

在专业技术知识方面，具备多领域交叉应用能力：

深度学习与语音处理：获得发明专利《基于定向降噪与干声提取技术的语音优化方法》，深

入掌握语音信号建模、噪声场景分类、全卷积神经网络（FCNN）架构设计等技术。提出基于

自监督学习的深度语音去噪框架，通过嵌入吸引子网络（DANet）实现高维时频信息分离，

显著提升语音增强效果，并申请获得软著《声盾降噪助手》，体现对音频压缩、离散余弦变

换（DCT）及人声分离算法的系统性掌握。

算法与模型优化：在大模型领域完成了Function 

Call模型优化，熟练应用数据增强、微调技术（如Lora微调等PEFT、全参微调），显著提升

工具调用意图指标，此外一作发表相关论文：《Structured Knowledge Injection and 

Reasoning Prompting for Compliance On-chain Asset 
Analysis》展现了深度学习框架的实战能力。

区块链与智能合约：在“光伏资源通证化平台开发”项目中，主导链上身份管理系统设计，

集成可验证凭证（VC）与合规引擎，攻克跨司法区合规规则动态适配难题，体现对分布式账

本技术、零知识证明等理论的深入理解。并基于此以一作发表论文《FCToken: A Flexible 

Framework for Blockchain-Based Compliance Tokenization 》

多智能体系统（Multi-Agent）：在采购业务流程重构中，基于Multi-

Agent框架将性能从0.78提升至0.93，并申请专利《一种基于大语言模型(LLM)和代理(Agent

)技术的的需求导购助手》，展示了复杂系统设计与协同优化的专业知识。

此外获得多项国家级竞赛获奖（如中国大学生互联网+创新大赛金奖、挑战杯省级金奖等）

，进一步印证了在学术与工程领域的双重知识储备。

2.工程实践的经历(不少于200字)

在工程实践中积累了丰富的跨领域项目经验，涵盖算法优化、区块链开发与智能系统设计：

* AI模型优化与部署：在蚂蚁工作期间，构建首个动态/交互式Function 

Call数据集，开发数据构造框架，支持可控生成，并将模型性能提升至BFCL榜单10B以下模

型第二（截止2024年8月），直接推动工具调用效率提升超30%。

* 
区块链合规平台开发：在浙江舜宇智能光学技术有限公司专业实践期间，主导光伏资源通证

化平台研发，设计链上身份管理系统与低代码智能合约生成工具，解决跨司法区合规难题，

大大缩短合约开发周期，助力企业获得30万元项目经费支持。

* 
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智能合约与流程重构：在阿里部门工作期间，优化大规模特征数据处理流程，通过LoRA模型

训练提升标注效率；在采购业务中基于Multi-

Agent框架重构流程，性能达标上线并申请专利，减少开发工程量40%。

其实践经历覆盖技术研发、系统设计、项目管理全流程，尤其在区块链与AI融合场景中展现

了突出的工程落地能力。

3.在实际工作中综合运用所学知识解决复杂工程问题的案例（不少于1000字)

案例1:

项目背景：在浙江舜宇智能光学技术有限公司的“光伏资源通证化平台开发”项目中，需将

光伏资源转化为链上合规数字资产，面临跨司法区合规管理、链上身份验证安全性、智能合

约可扩展性三大技术难点。

问题复杂性分析：

1. 
跨司法区合规规则动态适配：不同地区的法律差异导致传统合约难以灵活调整，需设计动态

合规引擎。

2. 链上身份隐私与安全：用户身份需与区块链地址绑定，但需避免敏感信息泄露。

3. 
低代码合约生成工具的可扩展性：现有工具难以支持复杂业务逻辑，影响平台响应速度。

解决方案与实施：

* 动态合规引擎设计：

    * 
技术路线：基于智能合约开发可编程合规规则库，引入法律语义解析模块，将不同司法区条

文转化为合约逻辑。

    * 
实现方法：采用Solidity编写合规规则模板，支持实时更新；通过多签机制确保规则修改的

合法性。

* 链上身份管理系统优化：

    * 
技术路线：集成去中心化身份（DID）框架，采用可验证凭证（VC）与零知识证明（ZKP）。

    * 
实现方法：用户通过权威机构完成KYC/AML认证，生成加密凭证并上链；交易时使用ZKP验证

凭证有效性，避免暴露真实身份。

* 低代码智能合约生成工具开发：

    * 技术路线：构建可视化配置界面，基于领域特定语言（DSL）生成合约代码。

    * 
实现方法：设计模块化合约组件库（如通证发行、交易清算），用户拖拽配置后自动生成并

部署合约。

综合效益：

 推动光伏资源数字化流转，助力碳中和目标；平台透明性提升投资者信心。

个人贡献：作为区块链开发负责人，谭浩主导了合规引擎与身份系统设计，提出并实施低代

码工具开发方案，攻克技术难点3项，一作发表论文《FCToken: A Flexible Framework for 

Blockchain-Based Compliance Tokenization 
》一篇，相关成果直接支撑其学位论文《基于可信能源数据的链上合规碳交易系统设计》。

 
案例2:
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项目背景：在蚂蚁AI Native部门参与“Function 

Call模型优化与平台集成”项目，需解决工具调用意图识别率低、多任务并行处理能力不足

问题，支撑芝士饼平台智能服务升级。

复杂性分析：

1. 
动态工具调用场景适配：传统数据集缺乏交互式调用样本，模型难以处理动态参数传递与上

下文依赖。

2. 多任务并行性能瓶颈：现有模型并行调用准确率仅68%，影响复杂任务执行效率。

3. 工程落地挑战：需将优化模型无缝集成至平台，同时确保推理延迟低于200ms。

解决方案与实施：

* 动态数据集构建：

    * 技术路线：设计Multi-

Agent仿真框架，模拟用户与工具交互场景，生成包含动态参数、嵌套调用的多样化数据。

    * 
实现方法：基于Python构建自动化数据生成管道，引入规则引擎控制Agent行为逻辑，生成1

0万+高质量样本，覆盖80%常见工具调用场景。

* 模型微调与并行优化：

    * 技术路线：采用Lora微调方案，优化qwen2-7b与72b模型，提升其工具调用能力。

    * 
实现方法：引入分层注意力头，分离工具选择与参数生成任务；通过课程学习策略逐步增加

并行任务复杂度。

个人贡献：作为项目负责人，主导技术方案设计并推动落地，一作发表论文一篇：《Struct

ured Knowledge Injection and Reasoning Prompting for Compliance On-chain Asset 
Analysis》
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（二）取得的业绩（代表作）【限填3项，须提交证明原件（包括发表的论文、出版的著作、专利

证书、获奖证书、科技项目立项文件或合同、企业证明等）供核实，并提供复印件一份】

1. 
公开成果代表作【论文发表、专利成果、软件著作权、标准规范与行业工法制定、著作编写、科技

成果获奖、学位论文等】

成果名称

成果类别 

[含论文、授权专利（含

发明专利申请）、软件著

作权、标准、工法、著作

、获奖、学位论文等]

发表时间/

授权或申

请时间等

刊物名称

/专利授权

或申请号等

本人

排名/

总人

数

备注

FCToken: A Flexible 

Framework for 

Blockchain-Based 

Compliance 

Tokenization

会议论文
2024年02

月06日

DOI: 

10.1109/IC

DMW60847.2

023.00093

1/6  

基于定向降噪与干声提

取 
发明专利申请

2021年05

月27日

申请号：20

2110587258

.6

1/5  

      

2.其他代表作【主持或参与的课题研究项目、科技成果应用转化推广、企业技术难题解决方案、自
主研发设计的产品或样机、技术报告、设计图纸、软课题研究报告、可行性研究报告、规划设计方

案、施工或调试报告、工程实验、技术培训教材、推动行业发展中发挥的作用及取得的经济社会效

益等】

一作录用论文：《Structured Knowledge Injection and Reasoning Prompting for 

Compliance On-chain Asset Analysis》。收录于会议：IJCAI-OpenKG。
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（三）在校期间课程、专业实践训练及学位论文相关情况

课程成绩情况 按课程学分核算的平均成绩： 82 分

专业实践训练时间及考

核情况(具有三年及以上

工作经历的不作要求)

累计时间： 1.2 年（要求1年及以上）

考核成绩： 84 分

本人承诺

个人声明：本人上述所填资料均为真实有效，如有虚假，愿承担一切责任

，特此声明！

                                  申报人签名：









原⽂链接：https://ieeexplore.ieee.org/document/10411565 
DOI：10.1109/ICDMW60847.2023.00093 
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Abstract

The integration of Domain-Specific Lan-
guages (DSL) with Large Language Mod-
els (LLM) offers an innovative approach
to addressing complex problems within
specific domains. This paper proposes
the method of structured knowledge injec-
tion and reasoning prompting, and con-
ducts experimental analysis on the task
of compliance on-chain asset analysis.
DSL, as a specialized form of knowl-
edge representation, is tightly coupled
with domain-specific terminology, allow-
ing expert knowledge to be presented in
a structured form. Leveraging the ad-
vantages of DSL in knowledge represen-
tation, we propose its combination with
LLMs to enhance the model’s capability
to handle complex tasks within specific
domains. In this paper, we provide a de-
tailed explanation of our method’s appli-
cation to solving the complex task of on-
chain compliance asset analysis. Com-
pared to traditional LLM prompting meth-
ods, our approach shows significant im-
provements in key metrics.

1 Introduction

Recently, there has been notable advancement in the
field of natural language processing thanks to the de-
velopment of large language models (LLMs). LLMs
are commonly trained on large volumes of internet
text data, allowing them can easily adapt to diverse

∗Both authors contributed equally to this research.
†Corresponding authors.

tasks in various domains without needing special-
ized data for each task.

The design of prompts is essential in the process
of adapting pre-trained LLMs to new tasks with lim-
ited or no task-specific training data. By employ-
ing prompt engineering techniques, these models are
able to outperform in a wide range of jobs and fields.
In contrast to traditional paradigms, which usually
need model retraining or substantial fine-tuning to
obtain performance on specific tasks, this adaptabil-
ity stands out

Analysis of smart contracts for on-chain compli-
ance tokens is a real problem in the production pro-
cess. On-chain financial assets typically possess
hundreds of financial attributes and various compli-
ance rule clauses. Unlike traditional financial prod-
ucts, financial domain experts analyzing on-chain
compliance assets need to read and understand So-
lidity code and combine it with financial domain
knowledge to analyze on-chain financial products.
This task comprises multiple sub-tasks such as un-
derstanding Solidity code, extracting financial at-
tributes, and reasoning about different compliance
clauses. Indeed, in real-life situations, there are nu-
merous domain-specific tasks that have similarities
and are characterized by complexity and strict lim-
itations. In order to tackle these issues, we suggest
implementing a method called structured knowledge
injection and reasoning prompt for LLMs. This
approach entails the injection of DSL syntax into
LLMs and the utilization of specialized syntax and
DSL to facilitate the handling of intricate restrictions
and task solutions by LLMs.

The justification for utilizing DSL is grounded
in the research conducted by [Decker, 1998] and
[Seipel et al., 2018]. These scholars propose that
DSL, with their syntax closely aligned with domain-



specific terminology, offer a more adaptable means
of representing expert knowledge. DSL function as
a means of KR (knowledge representing) and also
improve the ability to execute knowledge, enabling
the organization and formalization of unstructured
knowledge. Given the benefits of DSL in organiz-
ing knowledge and handling intricate restrictions,
we suggest integrating DSL with LLMs.

Figure 1: Architecture of ”structured knowledge injection
and reasoning prompting”

Our approach involves encoding domain knowl-
edge as a DSL and designing its syntax using the
Backus-Naur Form (BNF)[McCracken and Reilly,
2003] representation. LLM incorporates structured
knowledge, specifically the BNF syntax paradigm,
throughout task execution. A specialized subset of
BNF syntax is utilized as intermediate reasoning
steps and restrictions. Ultimately, we generate the
outcome in DSL format, which is then handed over
to an external DSL compiler for the purpose of pars-
ing and resolving certain issues. The structure of our
strategy is depicted in Figure 1.

In order to evaluate the enhancement in perfor-

mance of our method in problem-solving, we gen-
erated a dataset specifically designed for analyzing
on-chain compliance token smart contracts. The
dataset comprises 200 compliance token smart con-
tracts, each representing a different type. Each con-
tract corresponds to an on-chain asset that possesses
a minimum of 30 distinct financial qualities. Addi-
tionally, there are 20 unique compliance rules and at
least 8 user admission conditions within each con-
tract. Furthermore, each contract is composed of
at least four sub-contracts. We have developed five
distinct measures to evaluate the quality of the out-
comes produced by LLM, including both broad and
detailed viewpoints.

In particular, we investigated the utilization of
GPT models gpt-3.5-turbo, gpt-4 and ChatCLM
model chatglm3-turbo for analyzing on-chain assets,
and we compared their performance against differ-
ent reference points. Empirical findings demonstrate
that our approach substantially improves the capac-
ity of all algorithms to assess on-chain compliance
token smart contracts. The effectiveness of our ap-
proach showcases the immense capability of utiliz-
ing the inherent information within LLMs for intri-
cate task reasoning, achieved through a meticulously
crafted fundamental structure and prompts specifi-
cally tailored for LLMs.

This achievement demonstrates that the applica-
tion of structured knowledge injection and reason-
ing prompt approach for LLMs is highly effective
in resolving intricate difficulties within specified do-
mains.

2 Blockchain, Solidity and Compliance
Token

Blockchain is a distributed ledger technology
that connects data through blocks, creating
an immutable, transparent, and decentralized
database [Bhutta et al., 2021]. Blockchain technol-
ogy ensures data consistency and trustworthiness
through a consensus mechanism.

Smart contracts represent automated contracts ex-
ecuted on the blockchain. They facilitate trustwor-
thy, secure, and transparent transactions and con-
tract executions. Smart contracts are written using
Solidity, a high-level programming language that
is specifically designed for creating smart contracts
and is widely used on Ethereum. Solidity can de-
fine the state and behavior of contracts and interact
with other contracts. It is the most commonly used
language for writing smart contracts at present.



Compliance tokens are a form of regulated secu-
rities issued using blockchain technology. These to-
kens can represent shares, bonds, real estate, and
other real assets, traded and held via the blockchain.
Examining compliance tokens and their correspond-
ing smart contracts is essential in contemporary
financial and technical settings.Compliance analy-
sis assists firms in discovering and capitalising on
emerging blockchain and smart contract prospects
while complying with rules, thereby facilitating
worldwide expansion and fostering innovation.

3 Related Work

GPT-3[Brown et al., 2020] demonstrated a strong
capability to perform few-shot predictions, where
the model is given a description of the task in nat-
ural language with few examples. Scaling model
size, data, and computing are crucial to enable this
learning ability.[Rae et al., 2021; Smith et al., 2022;
Chowdhery et al., 2023; Dua et al., 2019] have re-
cently suggested training diverse types of LLMs us-
ing distinct training techniques. Smaller language
models lack the capability to tackle new tasks by
learning from a small number of examples. This
ability only becomes apparent when the size of
the model is raised, as stated by [Kaplan et al.,
2020]. In recent times, a number of studies [Xie
et al., 2023; Work, ]) have focused on comprehend-
ing the mechanisms and rationales behind in-context
learning. Another study is BINDER [Cheng et
al., 2022], which employs Codex to generate ”soft”
SQL queries for responding to inquiries based on ta-
bles.

Chain-of-thought prompting: Although LLMs
have shown significant success in various natural
language processing tasks, their reasoning capa-
bilities are often seen as a limitation. Recently,
Chain-of-Thought (CoT) reasoning[Wei et al., 2022;
Kojima et al., 2022; Wang et al., 2022] has been
proposed to enhance LLMs’ ability to perform rea-
soning tasks by demonstrating the ”reasoning pro-
cess in natural language.” [Suzgun et al., 2022]have
shown that CoT can surpass human performance on
challenging BIG-Bench tasks. Subsequently, sev-
eral other studies [Drozdov et al., 2022; Nye et al.,
2021] have proposed different methods to leverage
LLMs for reasoning tasks by allowing intermediate
steps. ReAct[Yao et al., 2022] suggests enhanc-
ing LLMs’ reasoning capabilities by utilizing ex-
ternal tools such as search engines. [Chen et al.,
2022] have proposed ”Program of Thoughts” (PoT),
a novel prompting method that generates program

Figure 2: Syntactic Definition of our DSL

code to express reasoning steps and delegates com-
putational tasks to a program interpreter, effectively
separating the reasoning and computation processes.

LLMs for program generation and semantic pars-
ing: Generating programs from natural language
specifications, often referred to as semantic parsing,
is a sub-problem of program synthesis. [Austin et
al., 2021; Xu et al., 2022] have explored methods
for using LLMs to generate code in general pro-
gramming languages (e.g., Python). There is also
work on using LLMs for tool usage through fur-
ther training[Schick et al., 2024] or prompting[Qin
et al., 2023; Wang et al., 2023] , studying how model
size[Qiu et al., 2022] and retrievers[Ye et al., 2020;
Levy et al., 2022] affect in-context learning, seman-
tic parsing, and constrained decoding in program
generation[Scholak et al., 2021; Poesia et al., 2022].

4 Methodology

4.1 Design Principles and Syntax of DSL

Our approach uses LLM to collect and analyze on-
chain token issuance data, identifying key frame-
works and trends without domain experts. LLM’s
language and pattern recognition capabilities enable
efficient analysis of complex on-chain data.

For data labeling, we use top market cap tokens
and NFTs from Etherscan and Cryptoslam, respec-
tively, resulting in 975 smart contracts and 14,200
functions after data cleansing. We analyze these
contracts to identify common features and compo-
nents for DSL design.

We process the source code using GPT-4[Achiam
et al., 2023] and standardize outputs through prompt



Figure 3: Examples of our prompting method. G represents for the entire DSL grammar, g represents for the specific
subset of grammar and y represents for the matching specialized DSL

engineering. A JSON label structure captures code
structure, roles, functions, and compilation versions.
Analyzing 975 smart contracts, we identify 2,447
unique functions after removing duplicates. Us-
ing vectorization and DBSCAN clustering, we cat-
egorize the top 20 frequent functions into five cat-
egories: Token Management, Permission Control,
Contract Upgrading, Contract Framework Construc-
tion, and Mathematical Calculation. Essential func-
tions include transfer, transferFrom, approve, bal-
anceOf, allowance, totalSupply, burn, mint, trans-
ferownership, and constructor.

We specify the grammar in our DSL using the
BNF. Figure 2 illustrates the syntactic definition of
our DSL. Compliance assets, designated as Asset,
have a structure similar to a class in object-oriented
programming. When designing an Asset, the name
and symbol must be specified. Each Asset includes
the setup of static variables and the execution of sev-
eral modules, such as:

• Type System: Includes Claim and Token.
Claim represents qualifications like compliance
standards. We manage a database for setting
and assigning Claim details in DSL. Token is
similar to the address type in Solidity and is

used for ERC20 asset configuration.

• Property: Includes financial asset details such
as admittance fee or notional price. Time-
related attributes are represented by the date
variable.

• Management: Manages on-chain asset be-
havior, defining actions like asset purchase
and margin calls. Key actions include Trans,
TransF, Mintable, and Burnable.

• Role: Represents participants in the compli-
ance token market, setting regulatory limita-
tions and specifying eligible groups.

• Compliance: Involves adding compliance
clauses to the asset. A compliance clause in-
cludes a role condition, asset condition, time
condition, and action, defining when specific
actions can occur.

4.2 Thought with Specific Knowledge
Representation

To address intricate challenges, we propose a novel
approach called Prompt Engineering based on Struc-
tural Knowledge Injection and Reasoning, which



enhances the learning process in the LLM envi-
ronment. In order to improve LLM’s proficiency
in numerical reasoning, PoT transforms the logical
processes of reasoning into Python code that can
be executed, effectively separating the process of
reasoning from the computational aspect of solv-
ing mathematical issues. SCoT aims to transform
the intermediate reasoning processes of CoT into
structured source code, which allows LLM to pro-
duce code with greater precision. The primary aim
of the study is to enhance LLM’s capabilities in
numerical computation and code generation using
the GPL(general-purpose programming language),
specifically the Python scripting language. Never-
theless, when confronted with intricate practical is-
sues, these solutions are not suitable.

However, drawing inspiration from these ap-
proaches, given that the introduction of General Pur-
pose Languages (GPL) is insufficient for solving the
majority of jobs, it would be advantageous to con-
sider implementing DSL tailored to specific tasks
in order to efficiently address intricate difficulties.
According to Wang et al.’s findings in Grammar
Prompt, LLM demonstrates exceptional proficiency
in both utilizing and creating DSL. It can showcase
strong capabilities for many DSL.

Therefore, we propose a Prompt method: struc-
tured knowledge injection and reasoning prompt-
ing.Instead of using PoT/SCoT, our approach in-
volves creating customized DSL and their related
DSL grammars tailored to specific activities. Dur-
ing the process of reasoning in LLM, we include
the entire DSL grammar G into the context of LLM.
Meanwhile, during the output phase of the LLM, we
allow LLM to make predictions for a specific subset
of grammar, called g, based on the user’s request.
This subset is a part of the set G. Subsequently, with
the anticipated subset g, LLM generates the match-
ing specialized DSL y. Ultimately, we employ a
DSL encoder S to analyze y and acquire the ulti-
mate outcome of the task. The method’s structure
is depicted in Figure 1. Our method primarily con-
sists of four components: DSL Grammar Injection
under BNF Paradigm, Specialized Grammar Gener-
ation, DSL Generation, and Examples. An example
of a Prompt is illustrated in Figure 3.

Our approach strictly follows the prompt princi-
ples outlined by Reynolds and McDonell (2021),
which encompass the following: Signifier: A sig-
nifier is a pattern which keys the intended behavior.
Memetic proxy: A memetic proxy is a concept in
which a character or characteristic situation is used

Table 1: Contract Categorization Rules

Level Number of Financial Attributes

Simple 30-70
Medium 71-110
Difficult 111-150

as a proxy for an intention. Constraining behavior:
In addition to directing the LLM on the desirable re-
sponse. Meta prompting: A meta prompt is a short
phrase or a fill-in-the-blank template encapsulat-ing
a more general intention that will unfold into a more
specific prompt when combined with ad-ditional in-
formation. First, we require the LLM to assume the
role of a programming expert and define its task.
Subsequently, we impose limitations on the LLM’s
conduct within the given Prompt. These constraints
are unrelated to the DSL Grammar and are typi-
cally designed according to the specific task context.
Next, we incorporate the BNF paradigm DSL gram-
mar, typically opting for the entire DSL grammar
to empower the LLM in producing a more precise
specialized grammar subset. To further improve the
LLM’s compliance with instructions, we incorporate
illustrations.

5 Experiments

5.1 Experiment set up

Dataset: In our analysis of compliance token
smart contracts, we have compiled a corresponding
dataset. This dataset consists of 200 on-chain com-
pliance token smart contracts with different levels
of complexity. It also includes their corresponding
DSL code. The purpose of this dataset is to evaluate
the LLM’s ability to analyze on-chain compliance
tokens. The complexity of the smart contracts in the
collection is determined by the quantity of financial
attributes. The analysis difficulty of these compli-
ance contracts has been classified into three levels:
simple, medium, and difficult. Table 1 outlines the
criteria used to classify the contracts into different
levels.

We conducted an experiment to evaluate the ef-
fectiveness of several methods in completing tasks
of different levels of complexity.

Baseline: Our findings comprise three different
models, including gpt-3.5-turbo, gpt-4, and chat-
glm3. We examine two prediction strategies: the
normal prompt technique, which produces results
by specifying the output format, called STD in
short and the chain of thought prompt approach,



which generates results through sequential reason-
ing, called COT in short.

Implementation Details: For our experiment,
we predominantly utilized the OpenAI API and
the ChatGLM API. Our approach involved utilizing
the LLM to generate DSL code, which was subse-
quently processed by an external DSL parsing tool
to generate the ultimate compliance asset analysis
report. The LLM output for the STD and COT tech-
niques was provided in a predefined JSON format.

In order to accommodate few-shot scenarios, we
have incorporated specific example types for various
procedures. Our method involves utilizing input So-
lidity code, specialized DSL Grammar for the input
code, and generating DSL code based on the DSL
Grammar. The STD and COT methods supplied ex-
amples that consisted of Solidity code as input and
the matching JSON format as output. Employing
enhanced output instructions aids the model in com-
prehending the designated output format more ef-
fectively. Thus, in order to strengthen the output re-
quirements of the LLM, we included a #RESPONSE
FORMAT prompt for each method to provide a con-
sistent format for the LLM’s output.

Metric Design:
For the task of analyzing compliance token smart

contracts, we have designed detailed metrics to eval-
uate performance from both macro and micro di-
mensions. The definitions and calculation formulas
for each measure are as follows:

• FAA: Financial Attribute Accuracy (Macro)

• KCAR: KYC Clause Accuracy Rate (Macro)

• UACIA: User Admission Clause Identification
Accuracy (Micro)

• ARCIA: Asset Requirement Clause Identifica-
tion Accuracy (Micro)

• TRICA: Time-Related Clause Identification
Accuracy (Micro)

5.2 Main Result

Main Results Table 2 presents our results on the
complete dataset, while Tables 2-4 showcase com-
parisons of various methods across different mod-
els on datasets of varying difficulty levels. In terms
of the KCAR metric, for the gpt-3.5-turbo model,
our method increased the number of correctly iden-
tified instances from nearly 300 to over 2100; for the
gpt-4 model and the chatgLM-3-turbo model, per-
formance improved by 15.0% and 48.5%, respec-
tively. The significant enhancements on GPT-3.5

and ChatGLM stem from the nature of the KCAR
metric, which requires LLMs to extract user quali-
fication numbers from Solidity smart contract code
and cross-reference them with a provided qualifica-
tion list. Our method effectively determines qual-
ification numbers based on DSL syntax constraints
and accurately corresponds qualification clauses by
leveraging a DSL compilation tool, resulting in a
marked performance improvement. For the UACA
metric, our method compared to the other two meth-
ods achieved improvements of over 87.3%/ranking
first/58.5%. Regarding the ARICA task, our method
demonstrated significant performance gains. The
baseline methods failed to accurately identify any
compliance clauses related to assets in gpt-3.5-
turbo and gpt-4 models, whereas our method suc-
cessfully identified 28.7% and 55.7% of the data,
respectively. Due to the performance limitations
of chatglm3-turbo, our method’s improvement was
modest, with an accuracy of 0.4% compared to
CoT’s 0.3%. This discrepancy arises because the
ARICA task involves extracting compliance clauses
related to user-held assets, including the recognition
of fund amounts and currency types. Many on-chain
asset currencies may not be present in the LLM’s
pre-training data, such as newly introduced tokens
like MNT, FET, and PEPE. As a result, LLMs may
fail to recognize them. However, our method can ac-
curately identify asset quantities and currency types
through DSL syntax constraints.

Omission in responses For the FAA and TRCIA
metrics, our method did not achieve notable im-
provements. Consequently, we conducted a more
detailed analysis of the experimental data.

As introduced in Section 5.1, we categorized the
data in our dataset into three levels of complexity:
simple, medium, and difficult. We utilized the gpt-
3.5-turbo model to analyze the performance across
these three dataset levels, with results shown in Ta-
ble 3.

It is evident that our method achieved the best re-
sults across all metrics in the simple-level data, with
significant performance improvements. However,
for medium and difficult levels, our method under-
performed compared to the other two methods in the
FAA metric (financial attribute identification) and
the TRCIA metric (time compliance clause identi-
fication). Analysis of the LLM outputs revealed the
issue: when handling large data volumes, the mod-
els exhibited ”lazy” behavior, using ”...” to replace
complete answers, leading to incomplete outputs.
Approximately 20% of the responses showed such



Table 2: Experiment result for different method and dif-
ferent model

Config FAA KCAR UACA ARICA TRICA

G3.5-STD 0.795 0.121 0.324 0.006 0.186
G3.5-COT 0.790 0.114 0.293 0.006 0.212
G3.5-Ours 0.784 0.686 0.607 0.288 0.186

G4-STD 0.746 0.505 0.448 0.000 0.469
G4-COT 0.767 0.468 0.638 0.001 0.735
G4-Ours 0.571 0.580 0.638 0.557 0.548

C3-STD 0.792 0.235 0.224 0.000 0.257
C3-COT 0.787 0.230 0.115 0.003 0.086
C3-Ours 0.366 0.349 0.355 0.004 0.207

Note: G3.5 denotes GPT-3.5, G4 denotes GPT-4, and
C3 denotes ChatGLM-3.

omissions, with only 3% occurring in simple data
and over 30 instances in medium and difficult data.
This is due to the complexity of generating BNF
DSL syntax outputs for our method; complex data
outputs led LLMs to perceive data types as repeti-
tive, resulting in self-omissions.

Zero-shot Results Lastly, we evaluated the zero-
shot performance of our method, comparing it with
one-shot in Table 4. It is clear that our method
heavily relies on sample setups; the absence of sam-
ples significantly degrades performance. Despite
providing DSL syntax in the outputs, the relation-
ship between DSL syntax and its conversion re-
mains complex, necessitating designed examples to
prompt conversion rules effectively.

Table 3: Performance Comparison of GPT-3.5-turbo
Across Different Dataset Levels

Method FAA KCAR UACA ARICA TRICA

Simple

STD 0.797 0.102 0.325 0.047 0.196
COT 0.807 0.128 0.268 0.006 0.193
Ours 0.942 0.710 0.720 0.349 0.212

Medium

STD 0.811 0.128 0.346 0.011 0.214
COT 0.797 0.116 0.282 0.005 0.183
Ours 0.751 0.696 0.636 0.280 0.194

Difficult

STD 0.784 0.140 0.304 0.001 0.154
COT 0.784 0.096 0.330 0.008 0.256
Ours 0.734 0.648 0.454 0.225 0.150

Table 4: Experiment Results Comparing Zero-shot and
One-shot Performance of Our Method Using GPT-3.5

Config FAA KCAR UACA ARICA TRICA

Zero-shot 0.715 0.000 0.507 0.275 0.330
One-shot 0.784 0.686 0.607 0.288 0.186

Table 5: Results for molecule generation

Method V D R M

LLM with DSL 98 0.74 91.0 93.3
Standard Prompting 87.7 0.73 80.0 76.7

Note: The metrics are validity (V), diversity (D), ret-
rosynthesis score (R) and membership (M). Higher is
better for all metrics.

5.3 More Than Solidity Code Analysis

Ultimately, our objective is to prove, using appropri-
ate experimental data, that our method can be used
not only for code analysis jobs but also for a wide
range of other activities with favorable outcomes.
As an illustration, we chose the problem of pro-
ducing distinct kinds of molecules. The empirical
data is derived from Grammar Prompting[Wang et
al., 2024]. The result on molecule class belongs to
Acrylates was shown in Table 5

6 Conclusion and Future Work

This work explores the utilization of DSL and
DSL syntax as structural knowledge to augment the
problem-solving capabilities of LLMs for compli-
cated tasks. In the task of compliance token anal-
ysis, our method demonstrates a leading advantage
across multiple metrics.DSL,and its syntax, which is
described in Backus-Naur Form, are utilized as spe-
cific techniques for representing knowledge. They
not only act as tools for knowledge representation
but also enhance the executability of knowledge,
allowing unstructured knowledge to be structured
and formalized. This enhances the adaptable de-
piction of knowledge appropriate to a certain do-
main. [Austin et al., 2021] introduced a framework
for DSL that is based on ontology. This frame-
work enables the DSL to undergo dynamic modifi-
cations, thus accommodating advancements. In the
future, we will investigate the incorporation of dy-
namic DSL with LLMs to consistently enhance the
problem-solving capacities of LLMs.
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