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Abstract: Cochlear implantation is a widely used rehabilitation method for severe sensorineural deafness, but MRI scans
can induce RF heating in implants, posing safety risks to patients. In this study, a novel finite-element-based
electromagnetic and thermal coupled simulation method to obtain the temperature distribution and maximum
temperature rise due to RF-induced heating is studied. This method allows for a quick analysis of the worst-
case implant configurations and an evaluation of RF heating effects. Additionally, for cochlear implants, we
propose a refined model parameters setting method which using a localized cochlear phantom in simulations
to analyse key factors affecting RF-induced heating include electrode length, lead trajectory, and phantom
model. In this paper, RF heating was evaluated using two phantoms, three electrode lengths, and three typical
lead trajectories, with the highest temperature rise observed at 1.922<C in the cochlear phantom. The results
show that small variations in electrode length have less impact compared to wire trajectory and phantom
model, indicating the need for greater focus on these factors when assessing RF heating in active implants.

Magnetic resonance imaging (MRI) is a widely
used diagnostic tool in clinical practice due to its
numerous advantages. It is non-invasive, free of
ionizing radiation, and can visualize internal
structures like the heart and blood vessels without the
use of contrast agents. MRI also offers high-
resolution imaging of soft tissues, minimal
interference from bone artifacts, and multidirectional

1 INTRODUCTION

Deafness is one of the most prevalent disabling
conditions  worldwide. The World Health
Organization (WHO) estimates that hearing
impairment costs the global economy approximately
$750 billion annually. Among the primary causes of

deafness is severe to profound hearing impairment,
which leads to disabling hearing loss (Chadha et al.,
2021). For patients with severe or profound
sensorineural  deafness, cochlear implantation
remains the only effective  method of
rehabilitation(Buchman et al., 2020). The increasing
necessity for MRI in cochlear implant users demands
rigorous safety assessments(Alberalar et al., 2023),

with RF-induced heating being a pivotal area of focus.

e https://orcid.org/0000-0002-3439-3733
bl https://orcid.org/0000-0001-8397-1491

and multiparametric imaging capabilities(Koptyug et
al., 2023). However, the increasing strength of MRI
magnetic fields, combined with the advancement of
new MRI technologies, has raised concerns regarding
the biological effects and safety of MRI, particularly
for patients with medical implants. The high-power
radiofrequency (RF) coils used in MRI systems can
induce electromagnetic resonance in conductive
implants, leading to RF-induced heating, which may



cause irreversible tissue damage, such as burns. This
is especially concerning for patients with implants
located near sensitive areas, like the brain(Rezai et al.,
2002). Cochlear implants, positioned subcutaneously
behind the ear and close to the brain, are particularly
susceptible to this risk, making RF-induced heating a
critical safety issue that requires thorough testing.

Previous studies primarily focused on in vivo
testing, a method involving the implantation of
devices into animals or human subjects, followed by
the monitoring of physiological parameters in an MRI
environment. Crane et al. conducted a retrospective
analysis of the safety and diagnostic validity of
cochlear implants in patients undergoing MRI
scans(Crane et al., 2010). However, their study was
limited by the absence of quantitative measurements
and a lengthy experimental timeline. Additionally,
Luechinger et al. evaluated the RF safety of cochlear
implants in experimental pigs (Long White breed),
while Roger et al. assessed the radiofrequency safety
of pacemaker leads in Danish Long White
pigs(Luechinger et al., 2005). Despite these efforts,
the in vivo approach was constrained by the
limitations of measuring locations and difficulties in
obtaining precise data.

To ensure standardization, avoid potential
medical ethical issues, and improve experimental
convenience, the ASTM F2182 standard outlines a
test procedure in which the implant is embedded in a
gelatinized saline-filled body phantom, exposed to an
RF field with a whole-body average specific
absorption rate (SAR) of 2 W/kg using a benchtop
system. The temperature is monitored for 15 minutes,
and the local SAR is determined using a calorimetric
method(ASTM_International, 2019). Yang et al.
found that, for devices implanted in or near bone
tissue, the assessment of RF-EMF energy deposition
using an ASTM model that incorporates bone
provided a better correlation with human models
compared to the standard ASTM model(Yang et al.,
2024). However, despite the widespread use and
study of in vitro body models for RF heating
evaluations, significant limitations remain. The
human body is a complex, heterogeneous
environment composed of various tissues, and the
homogeneous gel-saline  models used cannot
sufficiently mimic the diverse properties of human
tissues to accurately reflect the heating effects of
implants in such a complex biological
environment(Ran et al., 2017).

The ISO/TS 10974:2018 standard outlines a four-
layer test methodology designed to account for the
wide range of configurations and applications of
active implantable medical devices (AIMDs), aiming

to provide a conservative estimate of energy
deposition in controlled in vitro test systems
(Standardization, 2018). Numerous studies have also
employed the Finite-Difference Time-Domain
(FDTD) method and transfer function approach to
assess RF-induced heating. For example, Zeng et al.
evaluated RF heating in a cochlear implant within a
1.5T MRI coil using the FDTD method, alongside a
virtual human body model for electromagnetic
simulation, and employed the transfer function
approach to estimate temperature rise. They also
explored variables such as lead type, trajectory, and
MRI parameters on RF heating effects(Zeng et al.,
2018). Similarly, Islam et al. investigated RF-induced
heating in partially inserted electrodes in 1.5T MRI
systems, revealing that heating was significantly
influenced by factors such as contact size, spacing,
lead length, and clinically relevant trajectories(Islam
et al., 2023). While this approach has become widely
adopted due to its ability to maintain the complexity
of the implant system’s microstructure, it has some
limitations. The accuracy of FDTD EM simulations
is moderate, and the measurement of transfer
functions requires physical prototypes, making
repeated testing time-consuming and less suitable for
implants with complex and variable wire geometries,
such as cochlear implants. In such cases, alternative
methodologies may offer better efficiency and
precision(Winter et al., 2021).

The assessment of RF-EMF safety requires
consideration of curved components such as birdcage
coils and implant electrodes. In this context, the Finite
Element Method (FEM) emerges as an optimal
approach, offering enhanced precision in analyzing
complex, curved geometries compared to other
techniques(Winter et al., 2021). This paper introduces
a combined electromagnetic and temperature field
simulation method, based on the FEM approach, to
evaluate RF-EMF-induced heating in a cochlear
implant system within a 1.5T MRI coil. The method
facilitates the assessment of heating effects on the
cochlear implant system and investigates the key
factors influencing these thermal effects.

2 MATERIALS AND METHODS

2.1 Cochlear implants

The contemporary generation of cochlear
implants consists of two principal components: the
implant and an external sound processor. The
electrode array in modern cochlear implants typically
contains 12 to 22 electrodes, although the exact



number may vary depending on device design and
specific  clinical requirements. This array,
approximately 2 cm in length, is connected to one or
more internal current sources, which are activated
based on commands from the external
device(Macherey & Carlyon, 2014). The external
sound processor, worn behind the ear, is removable
and can be detached during magnetic resonance
imaging (MRI) examinations. As a result, this study
focuses exclusively on the radiofrequency
electromagnetic field RF-induced heating of the
implant portion.

Intracochlear Cochlear external Electronics

electrode array Lead clectrodes housing Gold coil antenna

T ——

" e \
—— —— W

Lead 1 Lead 2

Figure 1: Representative configurations of cochlear implant.

As illustrated in Figure 1, a typical cochlear
implant designed by Nurotron comprises consists of
several key components, including the intracochlear
electrode array, lead, extracochlear -electrodes,
electronic housing, and gold coil antenna. The
intracochlear electrode array is depicted as a 24-
electrode cylinder with radii of 0.4 mm, 0.5 mm, and
0.6 mm, respectively, tapering towards the tip of the
lead. To accommodate the anatomical variation of the
patient’s cochlea and case-specific requirements, the
length of the electrode array can be selected from 17.5
mm, 22.0 mm, or 255 mm. Additionally, two
extracochlear electrodes are also implemented in the
system.

2.2 Phantom for Cochlear Implants

The ASTM phantom was used in place of the
human body for the simulation. Since the cochlear
implant is typically implanted in the human cochlea,
and the main components of the cochlear
environment include the cochlear canal as well as
internal and external lymphatic fluids(Fatani et al.,
2024), a configuration simulating the cochlear
environment was incorporated. The specific
parameters of this configuration are presented in
Table 1(Hasgall PA, 2024), where ¢, is the relative

dielectric constant, o(unit:S/m) is the conductivity,
k(unit: W/ (m?-K)) is the coefficient of thermal

conductivity, c(unit:J/(kg-K)) is the heat capacity,
p(unit : kg/m?) is the density.

Table 1: Material parameters.

Phantom g, c k c p
ASTM 80 0.47 | 0.57 4150 | 1050

phantom

Cochlear | o775 | 032 | 046 | 3226 | 1089

phantom

The location and trajectory of the cochlear
implant within the ASTM phantom are illustrated in
Figure 2. The implant is positioned at the center of the
ASTM phantom, 45 mm from both the top and
bottom of the gel, aligned with the aperture direction,
and 2 cm from the sidewalls, where a relatively high
and evenly distributed electric field exists. Given that
RF-induced heating of partially inserted electrodes is
closely correlated with clinically  relevant
trajectories(Islam et al., 2023), and cochlear
implantation often involves electrode bending, this
paper discusses several typical simplified cochlear
bending trajectories.

Figure 2: The position and dimension of inserted bone
structure. Unit: mm.

2.3 Coupled EM and thermal
simulations

An 8-rung 1.5T low-pass birdcage coil (diameter:
800 mm, length: 700 mm) was used to generate a
circularly polarized electromagnetic field, driven in
quadrature mode at 64 MHz. The ASTM phantom
with the implant was positioned such that the center
of the phantom aligned with the isocenter of the RF
coil. To ensure proper electromagnetic isolation and
stable tuning, an RF shield was integrated around the
exterior of the birdcage coil. Scattering boundary
conditions were applied to truncate the computational
region, effectively simulating real-world conditions.
The initial value of the capacitance was estimated
using the Birdcage Builder Software developed by
Penn State University(Chin et al., 2002). A



subsequent scanning search was conducted in the
vicinity of this value to determine the optimal
capacitance, which was approximately 12.3 pF.

birdcage coil

8-rung 15T y é/"’/ \

ASTM ph

RF shield e e —

Scattering

—
boundary

g
ﬁ‘ Cochlear implants
y

Figure 3: Illustration of simulation setup, the position of
various components.

A sequential coupled electromagnetic and thermal
analysis was performed using the Finite Element
Method (FEM) simulation software COMSOL
Multiphysics to calculate the electric and temperature

fields for the ASTM phantom cochlear implant model.

Maxwell's equations were employed to solve the
fluctuating electromagnetic fields at specific points
within the model, influenced by the electromagnetic
field under investigation, in the steady-state
frequency domain. The steady-state electromagnetic
solution of Maxwell's equations provided the heat
source for the transient thermal analysis, which
yielded the electromagnetic solution for all domains
and the heat transfer solution within the ASTM body
model and the implant. Using the SAR as the heat
source for the temperature rise, the temperature field
distribution within the model is obtained by solving
the heat conduction equation through the Finite
Element Method (FEM), as shown in Eq. (1), where
o isthe density of the phantom, c is the specific heat

capacity of the phantom, k is the thermal diffusivity,
T is the temperature at a point in space, t is time and
Q is the heat source.

pC% =kV’T +Q =kV’T + SAR )

Mesh-independence Validation
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Figure 4: Illustration of mesh-independence validation.

A non-uniform mesh was utilized in the
simulation, with the mesh density near critical
inflection points selected as the final simulation mesh
based on mesh-independence validation. This
approach reduced computational costs while
maintaining accurate modelling.

3 RESULTS AND DISCUSSION

All results were obtained through numerical
simulations using the methodology described above,
with the input power of RF coil normalized to a
whole-body average SAR of 2 W/kg, in accordance
with the IEC 60601-2-33 power limitation criterion
for the MR normal mode of operation(Commission,
2022). This study evaluates RF-induced heating in
two phantoms with three different electrode lengths
and three typical simplified cochlear implant bending
trajectory scenarios. This study will analyze the RF-
induced heating by examining the spatial and
temporal distribution and variation of temperature. It
will focus on potential factors affecting maximum
temperature rise, including electrode length, lead
trajectory, and phantom models.

Table 2: Statistical analysis of temperature rises in
phantom around the lead tip under all the studied exposure
conditions. (Unit:C)

(a) ASTM phantom

Bending 17.5mm 22mm 25.5mm
trajectories electrode electrode electrode
length length length
Lead 1 1.458 1.459 1.461
Lead 2 1.589 1.629 1.746
Lead 3 1.592 1.592 1.597




(b) cochlear phantom

Bending 17.5mm 22mm 25.5mm
trajectories electrode electrode electrode
length length length
Lead 1 1.456 1.479 1.518
Lead 2 1.736 1.793 1.898
Lead 3 1.906 1.921 1.922

The statistical results of all simulations are
presented in Table 2. In the ASTM phantom, the
maximum temperature rises for Lead 1, Lead 2, and
Lead 3 were 1.461<C, 1.746<C, and 1.594<,
respectively. A similar trend was observed in the
cochlear model, where the maximum temperature
rises were 1.518<C, 1.898C, and 1.956 <C for Lead 1,
Lead 2, and Lead 3, respectively. For a given
trajectory, the maximum temperature rise was
consistently higher in the cochlear phantom
compared to the ASTM phantom.

3.1 Temperature rise distribution

By analyzing the spatial distribution of
temperature rise, based on the model's exposure to RF

electromagnetic fields for 15 minutes, as shown in Fig.

5, it can be concluded that in several scenarios
examined in this study, the areas with the highest
temperature increases are concentrated at the ends of
the gold coil, the outer cochlear electrode, and the tip
of the inner cochlear electrode. The hotspot is
primarily located at the tip of the inner cochlear
electrode, which warrants focused attention in further
research. Theoretically, the implant can be considered
an RF antenna that captures energy along its length
and dissipates the maximum energy density near its
end(Pozar, 2021), which aligns with the observed
hotspot at the tip of the intracochlear electrode.

Lead 1 Lead 2 Lead 3

Figure 5: Distribution of temperature rise around the
implant after 15 minutes of exposure.

In the time domain, the temperature rise curve
shown in Fig. 6 exhibits a rapid, near-linear increase,
followed by a gradual leveling off. The rate of

temperature change over time depends on the balance
between the power density absorbed from the RF
source and heat conduction within the phantom
material. As the temperature rise becomes significant,
heat conduction begins transferring heat from the
implant to the surrounding material, which slows the
rate of further temperature increase.

Temperature rise Curve
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Figure 6: Temperature rise curves for the maximum
temperature rise case for three bending trajectories.

3.2 Electrode length

Temperature rises were calculated for three
electrode lengths in both ASTM and cochlear
phantoms to investigate the effect of electrode length
on RF-induced heating. The electrode lengths, chosen
based on recommendations from implant surgeons,
were 17.5 mm, 22.0 mm, and 255 mm to
accommodate  different  cochlear  anatomical
structures and case variations. The type and number
of electrodes remained consistent across lengths, with
the primary difference being the spacing between
electrodes. The mean RF-induced temperature rises
for electrode lengths of 17.5 mm, 22.0 mm, and 25.5
mm were 1.546<C, 1.560C, and 1.600CT in the
ASTM phantom, and 1.699<C, 1.743<C, and 1.779C
in the cochlear phantom. As illustrated in Figure 7(a),
the maximum temperature rise tended to increase
with longer electrode lengths in both phantoms.

(2) Electrode length Effect (b) Bending degree Effect

Figure 7: (a) Line graph showing the average maximum
temperature rise for different electrode lengths in both the
ASTM and cochlear phantoms, (b) line graph showing the



maximum temperature rise for different bending
trajectories in both the ASTM and cochlear phantoms.

When the implant's size is approximately half the
wavelength, a significant temperature rise occurs due
to the resonance effect(Konings et al., 2000). This
resonance phenomenon is heavily influenced by the
electrical properties and the operating frequency of
the medium surrounding the implant. Neglecting
magnetic permeability, the wavelength of an
electromagnetic wave Am in a given material can be
calculated using Eq. (2), where Ao is the wavelength
of the electromagnetic wave in vacuum and &r is the
relative dielectric constant.

dm= 22 )

Jer
The wavelength of an electromagnetic wave in a
vacuum Ao is related to the RF frequency. In this
study, the research focuses on the 1.5T case.
According to Eq. (3), the wavelength can be
calculated as approximately 4.6875m.

Ao ; ©))
The relative permittivity of the ASTM phantom is
80, while that of the cochlear phantom is 57.75. Using
these values and applying Eqg. (2), the theoretical half-
wavelengths are calculated as 26.20 and 30.84mm,
respectively, for ASTM and cochlear phantom. The
cochlear implant leads tested thus far have not
reached this length, so, theoretically, the temperature
rise is expected to increase as the lead length
increases. The conclusion that the maximum
temperature rise increases with longer electrode
length aligns with theoretical expectations.

3.3 Bending Trajectory

Cochlear implantation often involves lead
bending, and three typical simplified bending
trajectories, as shown in Fig. 1, were investigated for
both the ASTM and cochlear phantoms. Figure 7(b)
illustrates the surrounding temperature rise for
different implantation trajectories in the two
phantoms, with maximum temperature rises of
1.518<C, 1.898<C, and 1.922<C for trajectories 1, 2,
and 3, respectively. It can be tentatively estimated
that trajectories with a greater degree of curvature and
a smaller bending range will concentrate more heat
and cause a larger temperature rise.

3.4 Phantom Model

The RF-induced thermogenesis of the same
implant differs between the ASTM and cochlear
phantoms. Table 2 and Figure 7 presents histograms
of the maximum temperature rise in both phantoms,
showing that the mean maximum temperature rise in
the ASTM phantom is 1.569<C, which is lower than
the 1.737<C observed in the cochlear phantom. In all
cases, the maximum temperature rise in the ASTM
phantom is lower than that in the cochlear phantom.
Similar to Yang et al.'s study, relying solely on the
ASTM phantom for localized areas may result in
temperature rise deviations(Yang et al., 2024). In this
paper, it is shown as an underestimation of the
maximum temperature rise. Therefore, when
assessing the RF thermogenic safety of cochlear
implants more localized scenarios should be
considered.

4 CONCLUSIONS

In this study, we introduce a model that
simulates the cochlear environment to improve the
assessment of RF-induced heating near cochlear
implants. This model provides results that more
accurately reflect the intracochlear conditions
compared to the ASTM model, verifying that the
ASTM model may have underestimated the
maximum temperature rise. Additionally, we propose
a finite element-based electromagnetic and thermal
co-simulation method to obtain the temperature
distribution and maximum temperature rise from RF
thermogenesis. This approach enables rapid analysis
of worst-case implant configurations and predicts RF
thermogenesis outcomes, helping to guide future
experiments and implant design. Using this method,
we examine factors such as electrode length and wire
trajectory, highlighting the importance of focusing on
the hotspot at the tip of the electrode and emphasizing
the need to control electrode length where possible.
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