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Abstract—In this paper, a lightweight method for
video surveillance anomaly detection based on image
semantic representation is proposed, aimed at enabling
widespread deployment on low-cost video surveillance
devices. The approach efficiently embeds representa-
tions of each video frame and detects anomalies by
comparing the similarity between these embeddings
and those of normal and abnormal samples stored in
a template library. A key innovation of this method
is an enhanced lightweight model training technique
for image semantic representation, which incorporates
specific semantic information into the model’s weights,
significantly improving anomaly detection accuracy.
This approach achieved an impressive 98.7% accuracy
on a custom dataset with an inference speed of 9.4fps on
the IoT terminal chip K210. Furthermore, an innova-
tive image-to-image generation pipeline for expanding
training datasets is introduced. This pipeline gener-
ates a diverse set of images with potential anoma-
lies through multimodal understanding and local edit-
ing. Additionally, the method features a hardware-
friendly and efficient CNN network structure, specif-
ically designed for resource-constrained devices. This
structure optimizes parameter efficiency and computa-
tional speed, outperforming traditional techniques in
both accuracy and efficiency. The proposed method
demonstrates superior performance, making it highly
suitable for practical deployment in real-world video
surveillance applications.

Index Terms—Video Surveillance, Anomaly Detec-
tion, Image Semantic Representation, Lightweight
Model

I. INTRODUCTION

Video surveillance anomaly detection is a crucial sub-
task in the field of video surveillance. Its purpose is
to automatically detect abnormal events in surveillance
videos by analyzing them, thereby helping people quickly
identify anomalies, improve the efficiency of video analys
and reduce the burden of manual analysis. Moreover, video
surveillance anomaly detection technology has strong ex-
tensibility and can effectively solve other subtasks. For
instance, in intelligent security, it can detect fire and
smoke, in intelligent parks, it can monitor perimeter in-
trusions, and in intelligent remote sensing, it can perform
change detection. All these tasks can be transformed into
an anomaly detection paradigm for solution.

The core of video surveillance anomaly detection lies
in defining normal and abnormal events in surveillance

S,

videos, which can generally be divided into two ap-
proaches: recognition and comparison. Recognition refers
to detecting anomalies by identifying predefined abnormal
events in surveillance videos, such as fires, intrusions, and
illegal parking. This approach typically involves devel-
oping recognition algorithms for each predefined abnor-
mal event, such as classification and detection algorithms
based on deep learning [1]-[4]. The advantage of this
method is that it can output specific types of anomalies.
However, its drawbacks include high complexity and a lack
of universality, as each type of anomaly requires a targeted
recognition algorithm, and many anomalies in real life
cannot be predefined.

Consequently, the current mainstream trend is to solve
anomaly detection problems through comparison. This
approach involves converting images into vector represen-
tations and detecting anomalies by comparing the rep-
resentation of the current frame with predefined normal
frames. The benefits of this method include strong gen-
eralization and extensibility. Generalization is reflected in
its ability to adapt to different environments and scenes;
anomaly detection can be performed by simply collecting
a normal frame from the current environment, minimizing
the impact of domain distribution shifts. Extensibility is
demonstrated by the ability to set multiple normal frame
templates simultaneously; false positives can be reduced
by adding comparison templates without modifying the
model and algorithm. The disadvantage is the lack of spe-
cific anomaly types, but with the continuous development
of contrastive learning techniques and accuracy improve-
ments, specific anomaly types can also be identified by
adding anomaly frame templates.

There are various methods based on comparison, in-
cluding image feature operator methods like SIFT [5] and
SSIM (6], deep learning-based image feature methods like
LPIPS [7], and methods based on Siamese networks [8]
[10]. Recently, with the rise of self-supervised pretrain-
ing paradigms for neural networks based on contrastive
learning [11]-[15], the representation capabilities of im-
ages have been gradually improved, and neural network
model architectures have evolved from convolutional neu-
ral networks (CNNs) [16] to Transformers [17]. Moreover,
multimodal representation learning has become a research
hotspot, with various methods for image-text comparison
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