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proposed LoGoFair framework.

Supplementary Material: & zip

iThenticate Agreement: Yes, I agree to iThenticate's EULA agreement version: vlbeta

Reproducibility Checklist: I certify all co-authors of this work have read and completed the Reproducibility Checklist.
Submission Number: 16104

LoGoFair: Post-Processing for Local and Global Fairness in Federated Learning

Li Zhang, Chaochao Chen*, Zhongxuan Han, Qiyong Zhong, Xiaolin Zheng

Zhejiang University
zhanglizI80@gmail.com, {zjucee, zxhan, youngzhong, xlzheng } @zju.edu.cn

Abstract

Federated learning (FL) has garnered considerable interest
for its capability to learn from decentralized data sources.
Given the increasing application of FL in decision-making
scenarios, addressing fairness issues across different sensi-
tive groups (e.g., female, male) in FL is crucial. Current re-
search often focuses on facilitating fairness at each client’s
data (local fairness) or within the entire dataset across all
clients (global fairmess). However, existing approaches that
focus exclusively on either local or global fairness fail to ad-
dress two key challenges: (CH1) Under statistical hetero-
geneity, global fairness does not imply local fairness, and
vice versa. (CH2) Achieving fairness under model-agnostic
setting. To tackle the aforementioned challenges, this paper
proposes a novel post-processing framework for achieving
both Local and Global Fairness in the FL. context, namely
LoGoFair. To address CHI, LoGoFair endeavors to seek the
Bayes optimal classifier under local and global fairness con-
straints, which strikes the optimal accuracy-fairness balance
in the probabilistic sense. To address CH2, LoGoFair em-
ploys a model-agnostic federated post-processing procedure
that enables clients to collaboratively optimize global fair-
ness while ensuring local faimess, thereby achieving the op-
timal fair classifier within FL. Experimental results on three
real-world datasets further illustrate the effectiveness of the
proposed LoGoFair framework. Code is available at https:
HNgithub.com/liizhang/LoGofair.

1 Introduction

Federated learning is a distributed machine learning
paradigm that enables multiple clients to collaboratively
refine a shared model while preserving their data pri-
vacy (McMahan et al. 2017). With the growing integration of
FL in high-stakes scenarios such as healthcare (Rieke et al.
2020; Chen et al. 2024), finance (Chouldechova 2017a),
and recommendation systems (Burke 2017), fairness is gain-
ing prominence to prevent machine learning models from
discriminating any demographic group based on sensitive
attributes, e.g. gender and race. Several methods exist to
achieve group fairness in centralized settings (Agarwal et al.
2018; Alghamdi et al. 2022; Jovanovi¢ et al. 2023; Chen,

*Chaochao Chen is the corresponding author.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: (a) Demonstrates a toy example of local and global fair-
ness in the context of an one-dimensional classification problem.
These fair classifiers ensure equal gender proportions in classifica-
tion at local and global level (e.g. Local classifiers allocate 2/3 of
samples from both genders to the left side for client 1). (b) Presents
comparisons between local (FCFL) and global (FedFB) fair FL al-
gorithms across varying levels of heterogeneity. A smaller « signi-
fies more heterogeneity across clients, and a smaller A denotes a
fairer model at local or global level.

Klochkov, and Liu 2024), these methods typically require di-
rect access to entire datasets, thereby incurring high commu-
nication costs and privacy concerns if directly implemented
in the FL environment.

To develop fairness goarantees for federated algorithms,
this paper focuses on two key concepts of group fairness in
FL: Local and Global Fairness (Cui et al. 2021; Ezzeldin
et al. 2023; Hamman and Dutta 2024). Local fairness aims
to develop models that deliver unbiased predictions across
specific groups when evaluated on each client’s local dataset.
Since the models are ultimately deployed and applied in lo-
cal environments, achieving local fairness is indispensable
for promoting fair FL models. Global fairness focuses on
identifying models that ensure similar treatment for sensi-
tive groups within the entire dataset across all clients. In
practice, models trained on large-scale aggregated datasets
are inclined to learn inherent bias in data and exacerbate the
treatment discrepancy of sensitive groups based as shortcuts
to achieving high accuracy. (Geirhos et al. 2020; Chang and
Shokri 2023). These global models typically fail to make
impartial decisions and uphold societal fairness. Figure la
provides an example of local and global fairness, illustrating
that these two fairness notions can differ. Therefore, both lo-
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Abstract

Positive, confinuous, and right-skewed data are fit by a mixfure of gamma and inverse gamma distributions. For 16
hierarchical models of gamma and inverse gamma distributions, there are cnly & of them that have conjugate priors.
We first discuss some common typical preblems for the eight hierarchical models that do not have conjugate priors.
Then, we calculate the Bayesian posterior densities and marginal densities of the eight hierarchical models that have
conjugate priors. After thal. we discuss the relations among the eight analytical marginal densities. Furthermaore, we
find some relations among the random variables of the marginal densities and the beta densities. Moreover, we
discuss random variable generations for the gamma and inverse gamma distributions by using the R software. In
addifion, some numerical simulations are performed fo illustrate four aspects: the plots of marginal densities. the
generations of random variables from the marginal density, the transformations of the moment estimators of the
hyperparameters of a hierarchical model, and the conclusions about the properiies of the eight marginal densities
that do not have a closed form. Finally, we illusirate our method by a real data example, in which the original and
transformed data are fit by the marginal density with different hyperparameters.

Keywords: conjugate prior; gamma and inverse gamma disfribution; hierarchical model and mixture
distribution; marginal density; posterior density

MS3C: 62C10; 62F15; 93413

1. Introduction

Mixture distribution refers to a distribution arizing from a hierarchical strucfure. According tfo [1], a random
variable X is said to have a mixture distribution if the distribution of X depends on a quantity that also has a
distribution. In general, a hierarchical medel will lead to a mixture distribution. In Bayesian analysis, we have a
likelihood and a prior, and they naturally assemble into a hierarchical model. Therefore, the likelihood and prior
naturally lead to a mixture distribufion, which is the marginal distribution of the hierarchical model Important
hierarchical models or mixiure distributions include binomial Poisson (also known as the Poisson binomial
distribution: see [2,3.4,5,6]), binomial-negative binomial ([1]), Poisson gamma ([7.8.9,10,11,12.13 14]), binomial beta
(also known as the beta binomial distribution; see [15,16,17 18,19]), negative binomial beta (also known as the beta
negative binomial distribution; see [20,21.22 23, 24]), multinomial Dirichlet ([25.26,27,28.29]), Chi-squared Poisson
{113, mormal-normal ([1,30,31,32,33,24]), normal-inverse gamma ([18,30,35,36]), normal-normal inverse gamma
([30,37.38,39]), gamma—gamma ([35]). inverse gamma—inverse gamma ([40]), and many others. See also [1,30,35]
and the references therein.

By introducing the new parameter(s), several researchers considered new generalizations of the two-paramefer
gamma distribufion, including [41.42 43 44]. Using the generalized gamma function of [45], ref. [44] defined the
generalized gamma-type distribufion with four parameters, based on which [46] infroduced a new fype of three-
parameter finite mixture of gamma disfributions, which can be regarded as mixing the shape parameter of the
gamma distribution by a discrete distribution.
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