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Abstract. Identifying the wear status of cutting tools during the machining process is essential
because failure to promptly replace severely worn tools can significantly impact the quality of
workpiece machining. Presently, machine learning methods are predominantly utilized for
monitoring cutting tool wear status. However, these methods rely on manual feature extraction
and exhibit low accuracy. This study introduces a novel RRP-Net model, built upon the RepVgg
and ResNet frameworks, integrating a parameter-free self-attention mechanism called SImAM
to expedite the model's solving speed without increasing parameters. Within the foundational
module of the model, a structural reparameterization approach is employed to transform the
multi-branch structure during training into a single-branch structure during validation. This
method not only enhances model accuracy but also accelerates the model validation process. The
publicly available cutting data from PHM2010 is employed for model training and validation.
The findings demonstrate that RRP-Net surpasses classical convolutional neural network models
in identifying cutting tool wear status within the PHM2010 dataset, achieving an average
accuracy of 98.65% and enhancing recognition accuracy on relevant datasets by 2.41%. To
verify the model's practical applicability, specificity and recall during the Break stage are
computed at 99.73% and 98.18%, respectively, affirming the model's exceptional robustness and
stability. The heightened accuracy and efficiency of RRP-Net further broaden its applicability
within the industrial domain.

Keywords. Tool condition monitoring. Deep learning. Convolution neural network. Self-
attention



1. Introduction

1.1. Background

The ongoing evolution of Industry 4.0 and intelligent manufacturing has led to a growing need for
advanced manufacturing and processing technologies. In this context, CNC machine tools assume a
pivotal role. Within the machining process of NC machine tools, the tool emerges as a critical
determinant influencing machining quality'!l. The wear status of the tool directly impacts the precision
and quality of workpiece processing, consequently influencing the efficiency of the machine tool and
leading to amplified enterprise expenditures and resource depletion. Traditional tool condition
monitoring typically necessitates halting the spindle, followed by extracting the tool for scrutiny and
measurement under a microscope. This procedure elongates machine tool downtime, disrupts processing
continuity, and diminishes efficiency. According to pertinent research, tool breakage-induced downtime
constitutes 20% of the total downtime [,

Tool wear undergoes a dynamic process that evolves over time. Initially, the rate of tool wear
accelerates rapidly, followed by a deceleration phase where the wear process persists for a relatively
extended period. Subsequently, during the severe wear stage, tool wear accelerates once more. Prompt
replacement of tools in the severe wear stage during the cutting process is imperative since tools at this
stage cannot ensure machining quality. Hence, analyzing tool wear status holds significant meaning and
importance.

1.2. Related work

Before the advent of deep learning, tool wear monitoring predominantly relied on machine learning
methodologies. Initially, researchers extracted features pertinent to tool wear from processing signals to
serve as model inputs, subsequently employing conventional machine learning techniques to derive
outputs. A survey conducted in 1997 indicated that over 60% of tool wear monitoring implementations
employed machine learning approaches!®!. Notably, within the realm of tool monitoring systems,
Support Vector Machines (SVM), Artificial Neural Networks (ANN), Bayesian networks, and Hidden
Markov Models emerge as the most prevalent. However, traditional machine learning exhibits inherent
limitations: necessitating manual feature extraction, thereby risking feature loss and subjective biases;
displaying feeble generalization capabilities, excelling in specific machine tool cutter scenarios yet
faltering in broader contexts; further, necessitating preprocessing tasks like data dimensionality
reduction or feature mapping, which may impede comprehensive representation of the entirety of tool
wear information, consequently undermining model training efficacy and predictive efficiency.

In recent years, the development and widespread adoption of sensors have propelled the application
of deep learning in the industrial sector®. In comparison to traditional machine learning methods, deep
learning offers distinct advantages, notably the ability to incorporate multiple hidden layers.
Consequently, deep learning can extract more intricate features, enabling continuous learning of
characteristics pertinent to tool wear. This enhances the model's resilience to fluctuations in data and,
by extension, augments the precision of tool wear monitoring. Presently, prominent deep learning
techniques utilized for tool wear monitoring encompass Long Short-Term Memory (LSTM),
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Multi-Layer
Perceptron (MLP). Zhou et al¥! employed Long Short-Term Memory Neural Networks (LSTM) to
predict tool lifespan under varying conditions, thereby validating its effectiveness. Jin et al. Mintroduced
a Parallel Long Short-Term Memory Neural Network (PLSTM) combined with Singular Spectrum
Analysis (SSA) for predicting energy consumption, showing further improvements compared to other
models. Wang et al.®ldeveloped a deep heterogeneous GRU model combined with local feature
extraction for long-term equipment forecasting. However, due to the structural limitations of LSTM and
GRU, they cannot be trained in parallel, leading to increased training time and computational resource
consumption. Convolutional Neural Networks (CNNs), on the other hand, excel in parallel computation,
speeding up calculations and reducing resource waste, making them commonly used in engineering.



Many researchers use CNNs for tool wear monitoring. Marei et al.[’tool health status, suggesting direct
application in current CNC machining. Cheng et al.'%'developed a Parallel Convolutional Neural
Network (PCNN) structure combined with Bidirectional Long Short-Term Memory Neural Networks
(BiLSTM) to predict tool wear values. However, CNNs also have drawbacks, notably their high
computational resource requirements during convolution, leading to longer training times. Performing
convolutions in industrial settings necessitates high-performance GPUs and other specialized hardware,
posing significant challenges to deploying CNNs in industrial applications. Therefore, efficient and
high-performance CNN models are essential in industrial settings.

1.3. Contribution of this study

(1) This study introduces the novel RRP-Net model, which is the first to integrate RepVGG with
the ResNet framework, achieving high performance and rapid monitoring and identification of
tool wear.

(2) The research employs an innovative data preprocessing technique that processes collected
signals through sliding windows. These signals are analyzed in the time domain, frequency
domain, and time-frequency domain to extract feature matrices corresponding to tool wear,
which are then transformed into images for model input.

(3) The research employs an innovative data preprocessing technique that processes collected
signals through sliding windows. These signals are analyzed in the time domain, frequency
domain, and time-frequency domain to extract feature matrices corresponding to tool wear,
which are then transformed into images for model input.

(4)  The model has been trained and assessed using the PHM2010 public cutting dataset, where it
demonstrated superior recognition accuracy, faster computation speeds, and fewer parameters
compared to other tool wear recognition algorithms. In practical applications, the model has
performed excellently. F1 score validation further confirms the RRP-Net model's robustness,
generalization ability, and stability.

2. Proposed model framework

2.1. Data preprocessing

For the collected seven types of signals (force signals in xyz directions, vibration signals in xyz
directions, and acoustic emission signal), sliding window processing is applied. The signals collected
from a single tool pass are divided into 100 parts, and each part undergoes time-domain analysis,
frequency-domain analysis, and time-frequency domain analysis. In the time-domain analysis, the
absolute mean, peak, root mean square, root amplitude, skewness, kurtosis, waveform factor, impulse
factor, skewness factor, peak factor, clearance factor, and kurtosis factor of the signals are calculated.
In the frequency-domain analysis, the centroid frequency, mean square frequency, root mean square
frequency, and frequency variance are determined. In the time-frequency domain analysis, a total of 24
characteristic values of wavelet packet energy are calculated. Subsequently, the values of each signal
are aggregated into a matrix, where the rows represent the seven different types of signals, and the
columns represent the 24 characteristic values. Finally, these feature matrices are transformed into three-
channel images to serve as the output of data processing and the input to the main model.

2.2. Main Structure

In this paper, we improved the backbone network of RepVgg!'!lby incorporating a parameter-free
attention mechanism and integrating the design of ResNet!'?), resulting in the RRP-Net model. The main
structure of the network is shown in Figure 1. The model is composed of the following parts: input layer,
RRP-Net block, SimAM, average pooling layer, fully connected layer, and output layer. After data
preprocessing, the image is used as the input to the main model. The RRP-Net block mainly consists of
three branches: a 3x3 convolution with a batch normalization layer, a 1x1 convolution with a batch



normalization layer, and a pure batch normalization layer. Then, through convolution kernel re-
parameterization, a new 3%3 convolution kernel is obtained, which integrates all the information from
the above three branches. The output, after being dimensionally reduced by the average pooling layer,
is fed into the fully connected layer, resulting in a five-classification model.
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Fig.1. RRP-Net Structure
RRP-Net Block is the most critical module in this network model, which consists of the following parts:
a 1x1 convolution kernel with BN layer, a 3x3 convolution kernel with BN layer, and a standalone BN
layer. Adopting this multi-branch structure during training enables the model to capture different
features of input data from different branches, thereby enhancing the model's ability to express and
generalize data. In the validation process, we employed a method of structural re-parameterization,
which merges the convolutional kernel parameters and BN parameters from three branches to ultimately
obtain a fused 3%3 convolution kernel. The information extracted by this kernel after structural re-
parameterization is consistent with the multi-branch situation during training. The specific process and
formula of structural re-parameterization are shown in Eq.1. A parameter-free attention mechanism,
SimAM, is introduced between different stages, which helps to improve the speed of the model!**. It
can take any intermediate feature tensor as input and transform it into an output with the same size as

the input.
K®=BN(KV4W® 1® 6@ 4@ 3O) L BN(KVkWD, 40 5O A® 30Y 4 BN(KD, 4,0 4©® g0)

BN(K,p,0,7,8) ... = (Koo — ) 2 + B,
' (D
Kl...=YK, . A b=—F"1p
g; g;
BN(K*W,11,0,7,0) ... = (K¥W') ... +b]

W® e R“* 3 represents a 3 X3 convolution kernel with C1 input channels and C2 output channels, ,
w®e R represents a 1 X 1 convolution kernel with C1 input channels and C2 output channels. We

& S0 O 30
use #0707 = as the accumulated mean, standard deviation and learned scaling factor and bias of



the BN layer following 1 X1 conve K® e RY " #>*Wi represents the input and K@ g R * @ W

represents the output of the model, where * represents the convolution operation.

3. Experiment Study

3.1. Datasets description

The dataset used in this experiment is the publicly available PHM2010 dataset!', which includes the
full lifecycle data of six cutting tools (C1-C6). After each cutting pass, the wear on the back face of the
tool is measured using a microscope, and seven types of monitoring signals are collected: cutting forces
in XYZ directions, vibration signals in XYZ directions, and acoustic emission signals. The specific wear
values of the tools C1, C4, and C6 were published.
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Fig. 2. Schematic diagram of the PHM2010 experiment

The experiment was repeated six times under the above cutting conditions for the entire lifecycle of
each experiment. During the cutting process, three types of sensors were used: a triaxial force sensor to
collect force signals in three directions, an accelerometer to collect vibration signals in three directions,
and an acoustic emission sensor to collect acoustic emission signals. At the end of each cutting pass, the
wear on the side faces of the three cutting teeth was measured offline using a LEICA MZ12 microscope.
The average wear on the side faces of the three cutting teeth was then calculated as the tool wear value!'®,
The specific process is shown in the Figure. 2. Based on the tool wear data, k-means clustering analysis
can classify the tool states into five categories: state 1: 1-30 cutting passes, state 2: 31-130 cutting passes,
state 3: 131-200 cutting passes, state 4: 201-260 cutting passes, and state 5: 261-315 cutting passes.

Datasets T1, T2, T3 and the number of images corresponding to each state are shown in Table 1.
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Table 1 Multiple datasets and model details

Datasets Tool model The number of images in each dataset
Tl Cl Sharp Normal wear Micro fracture Macro wear breakage
T2 C4
T3 c6 3000 10000 7000 6000 5500

3.2. Model training and evaluation

3.2.1. Training configuration

This experiment was conducted on a Windows 10 system, with the training environment set up on
PyTorch 1.8.1, using an NVIDIA RTX3080 GPU and CUDA 11.1. The learning rate was set to 0.0001.
Due to the large size of the model parameters, the batch size was set to 16. A smaller batch size allows
for the use of more complex network structures and helps to prevent model overfitting, thereby
enhancing the model's generalization ability. The model parameters were iterated using the Adam
optimizer, which can adaptively adjust the learning rate, offering faster convergence speed and stronger
robustness, suitable for large-scale and complex learning tasks.

3.2.2. Accuracy comparison

Currently, model performance evaluations primarily use accuracy metrics. In classification tasks,
accuracy indicates the proportion of correctly classified samples out of the total sample count, with
values closer to 1 denoting better model performance. This study compared common convolutional
networks such as ResNet!'?), VGGl and ConvNet!'®), and found that RRP-Net outperforms other
models in terms of accuracy and convergence speed. As shown in the fig.4., RRP-Net's accuracy steadily
increases with more epochs. Compared to ResNet50, RRP-Net exhibits better stability, and compared
to other models, it has faster convergence speed and higher accuracy. In the loss value chart, RRP-Net
shows the quickest decline in loss values. This study also compiled the highest accuracy achieved during
training and the average of the top five accuracies. RRP-Net's highest accuracy reached 99.11%, which
is 2.41% higher than the ConvNet model. The average of the top five accuracies is 98.99%, indicating
that RRP-Net achieves a very high level in monitoring the wear state of cutting tools.

Validation Accuracy per Epoch fer Different Models Train Loss per Epoch for Different Models

Fig. 4. Model accuracy and loss curve
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3.2.3. Performance evaluation

The confusion matrix plays a very important role in assessing the actual performance of the model,
demonstrating the model's predictive effectiveness across five different wear states!!”!. By analyzing the
confusion matrix, the model's accuracy, false positive rate, and false negative rate for different states of
tool wear can be assessed. The figure below shows the confusion matrices for datasets T1, T2, and T3,
with average accuracies for the five categories being 98.6%, 98.4%, and 97.4% respectively. In the T1
dataset, the model achieved a 100% prediction accuracy for category 1; in the T2 dataset, it also reached
a 100% prediction accuracy for category 2. These high-accuracy results demonstrate that RRP-Net is
very effective in recognizing tool wear under different datasets, proving the model's superior
performance.

Fig.6. Confusion matri)é of datasets T1, T4, and T6

3.2.4. Actual application evaluation

To further discuss the application of the RRP-Net model in practical scenarios, four secondary indicators
of the confusion matrix were calculated: accuracy, recall, specificity, and F1 score, including both Macro
F1 score and Micro F1 score. Accuracy measures the model's accuracy in recognizing categories, recall
indicates the probability of the model successfully identifying true samples when the tool is at the break
stage, and specificity measures the model's accuracy in predicting negative cases?’l. By analyzing the
Macro F1 score and Micro F1 score, the model's performance in multi-class problems can be more
comprehensively assessed, taking into account the balance and imbalance among categories. The
metrics for the datasets are shown in the Table 2. During the Break stage, the average recall rate for the
three datasets is 98.18%, with the T2 dataset achieving 99.27%. The average specificity for the three
datasets is 99.73%, with the T2 dataset even higher at 99.77%. This indicates that the model has a high
probability of successfully recognizing severely worn tools. The average Macro F1 score and Micro F1
score of the model are 98.14% and 98.20%, respectively, showing that RRP-Net performs well
independently in each category and is also very effective overall.

Studies have shown that when the convolutional kernel size is 3x3, the number of floating-point
operations per unit time is relatively the highest!!!), as shown in the Table 3. This indicates that the
computer can process more data in a short period of time and perform more complex computational
tasks. The branch convolutional kernels in the RRP-Net Block have been structurally reparameterized
into 3x3 kernels, improving the model's computational efficiency and application performance, which
helps in accurately and timely monitoring the tool wear state, avoiding adverse consequences due to
excessive tool wear. As the model's performance improves, its deployment scope in the industrial field

is also further expanded.
Table 2 Evaluation indicators on the T dataset

Evaluation indicators T1 T2 T3

Accuracy(%) 98.57 99.37 98.00
Recall(%) Pyoar 98.18 99.27 97.09
Specificity(%) P,k 99.73 99.77 99.69
F1_score(%) Pk 98.45 99.09 97.80
Macro_F1_score(%) 98.46 98.93 97.03

Micro_F1_score(%) 98.53 98.92 97.14




Table 3 Theoretical TFLOPS with different kernel sizes

Kernel size Theoretical Time Theoretical
FLOPs Usage(ms) TFLOPS

1X1 420.9 84.5 9.96

3X3 3788.1 198.8 38.10

5X5 10522.6 2092.5 10.57

TX7 20624.4 43943 9.38

4. conclusion

This paper proposes a model for monitoring tool wear states based on the RepVgg combined with the
ResNet framework (RRP-Net). This model can quickly and efficiently predict the wear state of tools,
which has significant industrial application value. The specific content of this study is as follows:

(1)

2)

)

(4)

By processing multi-sensor signals with a sliding window, each signal is divided into 100 windows,
and each window signal is analyzed in the time domain, frequency domain, and time-frequency
domain. After the aforementioned feature processing, 24 features are extracted from each signal,
resulting in a 7X24 feature matrix. Consequently, a single wear value of the tool corresponds to
100 of these 7 X 24 matrices. Subsequently, through image conversion, these 100 matrices are
transformed into 100 images, serving as the input for RRP-Net. This method not only improves the
accuracy of tool wear state recognition but also provides reliable input for the tool state recognition
model.

The model combines the advantages of RepVgg and ResNet, and includes the SimAM parameter-
free attention mechanism module in the basic model block, which is a computational unit that
enhances the feature expression capability of convolutional neural networks. During the training
phase of the RRP-Net Block, multi-branch training is used, and during the validation phase, the
convolution kernels are structurally reparameterized, turning multi-branches into a single branch,
which further speeds up the model's operation while ensuring accuracy. This has promoted the
deployment of the model in the industrial field.

The RRP-Net model's predictive accuracy for different tool wear states in the publicly available
PHM?2010 dataset is higher than other convolutional neural network models, such as ResNet50,
Convnext, and Vgg16, with an accuracy improvement of 2.41% compared to ConvNext. The highest
prediction accuracies in the T1, T2, and T3 datasets were 98.57%, 99.37%, and 98.00%, respectively,
with an average accuracy of 98.65%. This demonstrates the superiority of RRP-Net in monitoring
tool wear states.

The model was evaluated in practical applications, producing confusion matrices for different
datasets in T1, T2, and T3, with average prediction accuracies of 98.6%, 98.4%, and 97.4%,
respectively. Four secondary indicators were also calculated: precision, recall, specificity, and F1
score. During the Break stage, the average recall value for the three datasets was 98.18%, and the
average specificity was 99.73%. This shows that the model can effectively recognize severely
worn tools in practical applications, performs well independently in each category, and is also
very effective overall, making it a very reliable and effective model for practical operations.

Prospect: This article focuses on tool wear monitoring under a single working condition and will
consider conducting experiments under varying working conditions to verify the effectiveness of RRP-
Net in monitoring wear under changing working conditions.
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