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一、个人申报
（一）基本情况【围绕《浙江工程师学院（浙江大学工程师学院）工程类专业学位研究生工

程师职称评审参考指标》，结合该专业类别(领域)工程师职称评审相关标准，举例说明】

1.对本专业基础理论知识和专业技术知识掌握情况(不少于200字)

在浙江大学台州研究院的实践期间，我系统掌握了机械工程领域的核心理论知识和前沿技术

。在基础理论方面，深入学习了高精度数控机床的设计原理、机械动力学、热误差补偿技术

以及精密加工工艺等知识。通过参与“基于中驱动电主轴的双面双刀塔高精度高速数控车床

”项目，进一步理解了双面同步车削的中驱动技术、双向电主轴延展性设计以及几何与热误

差协同控制等关键理论。

在专业技术层面，我重点掌握了多传感器数据融合、深度学习算法、迁移学习及数字孪生技

术的应用。例如，针对刀具磨损预测问题，通过并行卷积神经网络（CNN）提取多传感器数

据的深层次特征，并结合双向门控循环单元（BiGRU）处理时序信号，构建了RRP-

Net模型，实现了单一工况下的高精度磨损监测。此外，通过迁移学习技术（如CORAL方法）

，解决了复杂工况下源域与目标域数据分布差异的问题，提升了模型的泛化能力。同时，基

于数字孪生技术开发的刀具磨损监测系统，将物理实体与虚拟模型深度融合，实现了刀具状

态的实时模拟与预测。这些技术的应用不仅需要扎实的数学基础和编程能力（如Python、Te

nsorFlow框架），还需对机械系统特性有深刻理解，体现了理论与技术的综合运用能力。

通过实践，我对机械工程领域的前沿技术（如智能运维、工业物联网）有了更全面的认知，

并能够结合具体工程需求灵活调整技术方案，验证了自身对专业知识的掌握深度与应用能力

。

2.工程实践的经历(不少于200字)

在浙江大学台州研究院为期366天的专业实践中，我以研发工程师的身份全程参与了浙江省

“尖兵”“领雁”研发攻关项目——

“基于中驱动电主轴的双面双刀塔高精度高速数控车床研发及研究”。该项目旨在解决工程

机械、汽车等行业对长轴类零件双面高精度同步加工的技术难题，研发具有自主知识产权的

高端数控机床。

在项目中，我的核心任务是利用深度学习技术实现刀具磨损量及状态的智能预测与诊断。具

体工作包括：

实验平台搭建与数据采集：选择Kistler三向力传感器、加速度传感器等设备，设计切削参

数（切削速度、进给量、切削深度），采集刀具在不同工况下的振动、力信号和声发射信号

。

数据预处理与特征提取：通过时域分析（均值、方差）、频域分析（FFT）及时频域分析（

小波变换）提取信号特征，构建多维特征矩阵。

模型开发与优化：提出基于并行CNN与BiLSTM的RRP-

Net模型，用于单一工况下的磨损监测；针对复杂工况，引入迁移学习技术，通过CORAL方法

对齐源域与目标域数据分布，提升模型适应性。

系统集成与验证：开发基于数字孪生的刀具磨损监测系统，实现三维可视化与远程维护功能

，并在合作企业（如三重工）进行实地测试，验证系统可靠性与实用性。

通过实践，我熟悉了从需求分析、方案设计到系统落地的完整工程流程，并在团队协作中提

升了跨学科沟通与项目管理能力。

3.在实际工作中综合运用所学知识解决复杂工程问题的案例（不少于1000字)

在数控车床加工过程中，刀具磨损是影响加工精度与效率的核心问题。传统监测方法依赖人
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工经验或单一传感器数据，存在实时性差、误报率高、无法适应多工况等缺陷。尤其在双面

同步加工场景中，刀具磨损状态复杂多变，亟需一种高精度、自适应的智能监测方案。

一：问题分析与技术难点

1.数据异构性：多传感器（力、振动、声发射）数据维度高、特征耦合，难以直接融合。2.

工况复杂性：不同切削参数（如转速、进给量）导致数据分布差异显著，单一模型泛化能力

不足。3.实时性要求：需在毫秒级响应时间内完成磨损预测，对算法计算效率提出挑战。

二：解决方案

1.多传感器数据融合与特征工程

采用小波包分解对振动信号进行时频域分析，提取能量熵、峭度等特征；对力信号进行时域

统计（峰值、均方根）。通过主成分分析（PCA）降维，消除冗余特征，构建融合特征矩阵

。

2.深度学习模型设计（RRP-Net）

并行CNN模块：设计双分支CNN结构，分别提取时域与频域特征，通过跨通道融合增强特征表

达能力。BiGRU时序建模：将融合特征输入双向门控循环单元，捕捉刀具磨损的时序演化规

律。自适应损失函数：引入加权交叉熵损失，解决样本不平衡问题（正常状态样本远多于磨

损样本）。

3.迁移学习实现多工况适配

采用CORAL（相关性对齐）方法，最小化源域与目标域特征分布的差异，实现知识迁移。在

目标域数据稀缺时，使用预训练的RRP-Net模型进行微调，显著减少标注数据需求。

4.数字孪生系统集成

基于Unity 

3D开发可视化界面，实时映射刀具物理状态；搭建云端运维平台，利用MQTT协议实现数据远

程传输与故障预警。

三：实施效果与效益

精度提升：磨损状态识别准确率>97%（D31/D32达99.29%/99.65%），误判率降低70%。磨损

值预测MAE低至1.1428，R²>0.996，较单一传感器方案误差降低40%-70%。

效率优化：模型计算效率提升95%-

98%，训练时间从182.66s缩减至110.33s，满足工业实时性需求。

数字孪生系统减少人工巡检频率70%，运维成本下降25%。

本案例通过多学科技术融合（机械、算法、软件），系统性解决了刀具磨损监测中的复杂工

程问题。创新性提出轻量化模型结构与多传感器融合策略，兼顾精度与效率，并通过工业级

验证证实了方案的实用性。研究成果不仅推动了数控加工智能化升级，也为智能制造领域的

设备运维提供了可复用的技术范式。
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（二）取得的业绩（代表作）【限填3项，须提交证明原件（包括发表的论文、出版的著作、专利

证书、获奖证书、科技项目立项文件或合同、企业证明等）供核实，并提供复印件一份】

1. 
公开成果代表作【论文发表、专利成果、软件著作权、标准规范与行业工法制定、著作编写、科技

成果获奖、学位论文等】

成果名称

成果类别 

[含论文、授权专利（含

发明专利申请）、软件著

作权、标准、工法、著作

、获奖、学位论文等]

发表时间/

授权或申

请时间等

刊物名称

/专利授权

或申请号等

本人

排名/

总人

数

备注

Research on Tool Wear 

Monitoring Based on 

Enhanced 

Convolutional Neural 

Networks

会议论文
2024年11

月08日

Journal of 

Physics: 

Conference 

Series

1/5
EI会议收

录

一种基于 Unity3D 

的数控磨床状态远程监

测系统

发明专利申请
2023年08

月10日

申请号：20

2311002585

.6

5/5  

一种基于Swin-

Transformer的变工况下

数 

控车刀磨损状态分类方

法和装置

发明专利申请
2024年05

月03日

申请号：20

2311669443

.5

5/5  
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2.其他代表作【主持或参与的课题研究项目、科技成果应用转化推广、企业技术难题解决方案、自
主研发设计的产品或样机、技术报告、设计图纸、软课题研究报告、可行性研究报告、规划设计方

案、施工或调试报告、工程实验、技术培训教材、推动行业发展中发挥的作用及取得的经济社会效

益等】
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（三）在校期间课程、专业实践训练及学位论文相关情况

课程成绩情况 按课程学分核算的平均成绩： 85 分

专业实践训练时间及考

核情况(具有三年及以上

工作经历的不作要求)

累计时间： 1 年（要求1年及以上）

考核成绩： 74 分

本人承诺

个人声明：本人上述所填资料均为真实有效，如有虚假，愿承担一切责任

，特此声明！

                                  申报人签名：魏乃镇
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Abstract. Identifying the wear status of cutting tools during the machining process is essential 

because failure to promptly replace severely worn tools can significantly impact the quality of 

workpiece machining. Presently, machine learning methods are predominantly utilized for 

monitoring cutting tool wear status. However, these methods rely on manual feature extraction 

and exhibit low accuracy. This study introduces a novel RRP-Net model, built upon the RepVgg 

and ResNet frameworks, integrating a parameter-free self-attention mechanism called SimAM 

to expedite the model's solving speed without increasing parameters. Within the foundational 

module of the model, a structural reparameterization approach is employed to transform the 

multi-branch structure during training into a single-branch structure during validation. This 

method not only enhances model accuracy but also accelerates the model validation process. The 

publicly available cutting data from PHM2010 is employed for model training and validation. 

The findings demonstrate that RRP-Net surpasses classical convolutional neural network models 

in identifying cutting tool wear status within the PHM2010 dataset, achieving an average 

accuracy of 98.65% and enhancing recognition accuracy on relevant datasets by 2.41%. To 

verify the model's practical applicability, specificity and recall during the Break stage are 

computed at 99.73% and 98.18%, respectively, affirming the model's exceptional robustness and 

stability. The heightened accuracy and efficiency of RRP-Net further broaden its applicability 

within the industrial domain. 

Keywords. Tool condition monitoring、Deep learning、Convolution neural network、Self-

attention 



 

 

 

 

 

 

1.  Introduction 

1.1.  Background 

The ongoing evolution of Industry 4.0 and intelligent manufacturing has led to a growing need for 

advanced manufacturing and processing technologies. In this context, CNC machine tools assume a 

pivotal role. Within the machining process of NC machine tools, the tool emerges as a critical 

determinant influencing machining quality[1]. The wear status of the tool directly impacts the precision 

and quality of workpiece processing, consequently influencing the efficiency of the machine tool and 

leading to amplified enterprise expenditures and resource depletion. Traditional tool condition 

monitoring typically necessitates halting the spindle, followed by extracting the tool for scrutiny and 

measurement under a microscope. This procedure elongates machine tool downtime, disrupts processing 

continuity, and diminishes efficiency. According to pertinent research, tool breakage-induced downtime 

constitutes 20% of the total downtime [2]. 

Tool wear undergoes a dynamic process that evolves over time. Initially, the rate of tool wear 

accelerates rapidly, followed by a deceleration phase where the wear process persists for a relatively 

extended period. Subsequently, during the severe wear stage, tool wear accelerates once more. Prompt 

replacement of tools in the severe wear stage during the cutting process is imperative since tools at this 

stage cannot ensure machining quality. Hence, analyzing tool wear status holds significant meaning and 

importance.  

 

1.2.  Related work 

Before the advent of deep learning, tool wear monitoring predominantly relied on machine learning 

methodologies. Initially, researchers extracted features pertinent to tool wear from processing signals to 

serve as model inputs, subsequently employing conventional machine learning techniques to derive 

outputs. A survey conducted in 1997 indicated that over 60% of tool wear monitoring implementations 

employed machine learning approaches[3]. Notably, within the realm of tool monitoring systems, 

Support Vector Machines (SVM), Artificial Neural Networks (ANN), Bayesian networks, and Hidden 

Markov Models emerge as the most prevalent[4]. However, traditional machine learning exhibits inherent 

limitations: necessitating manual feature extraction, thereby risking feature loss and subjective biases; 

displaying feeble generalization capabilities, excelling in specific machine tool cutter scenarios yet 

faltering in broader contexts; further, necessitating preprocessing tasks like data dimensionality 

reduction or feature mapping, which may impede comprehensive representation of the entirety of tool 

wear information, consequently undermining model training efficacy and predictive efficiency. 

In recent years, the development and widespread adoption of sensors have propelled the application 

of deep learning in the industrial sector[5]. In comparison to traditional machine learning methods, deep 

learning offers distinct advantages, notably the ability to incorporate multiple hidden layers. 

Consequently, deep learning can extract more intricate features, enabling continuous learning of 

characteristics pertinent to tool wear. This enhances the model's resilience to fluctuations in data and, 

by extension, augments the precision of tool wear monitoring. Presently, prominent deep learning 

techniques utilized for tool wear monitoring encompass Long Short-Term Memory (LSTM), 

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Multi-Layer 

Perceptron (MLP). Zhou et al[6] employed Long Short-Term Memory Neural Networks (LSTM) to 

predict tool lifespan under varying conditions, thereby validating its effectiveness. Jin et al. [7]introduced 

a Parallel Long Short-Term Memory Neural Network (PLSTM) combined with Singular Spectrum 

Analysis (SSA) for predicting energy consumption, showing further improvements compared to other 

models. Wang et al.[8]developed a deep heterogeneous GRU model combined with local feature 

extraction for long-term equipment forecasting. However, due to the structural limitations of LSTM and 

GRU, they cannot be trained in parallel, leading to increased training time and computational resource 

consumption. Convolutional Neural Networks (CNNs), on the other hand, excel in parallel computation, 

speeding up calculations and reducing resource waste, making them commonly used in engineering. 



 

 

 

 

 

 

Many researchers use CNNs for tool wear monitoring. Marei et al.[9]tool health status, suggesting direct 

application in current CNC machining. Cheng et al.[10]developed a Parallel Convolutional Neural 

Network (PCNN) structure combined with Bidirectional Long Short-Term Memory Neural Networks 

(BiLSTM) to predict tool wear values. However, CNNs also have drawbacks, notably their high 

computational resource requirements during convolution, leading to longer training times. Performing 

convolutions in industrial settings necessitates high-performance GPUs and other specialized hardware, 

posing significant challenges to deploying CNNs in industrial applications. Therefore, efficient and 

high-performance CNN models are essential in industrial settings. 

1.3.  Contribution of this study 

（1） This study introduces the novel RRP-Net model, which is the first to integrate RepVGG with 

the ResNet framework, achieving high performance and rapid monitoring and identification of 

tool wear. 

（2） The research employs an innovative data preprocessing technique that processes collected 

signals through sliding windows. These signals are analyzed in the time domain, frequency 

domain, and time-frequency domain to extract feature matrices corresponding to tool wear, 

which are then transformed into images for model input. 

（3） The research employs an innovative data preprocessing technique that processes collected 

signals through sliding windows. These signals are analyzed in the time domain, frequency 

domain, and time-frequency domain to extract feature matrices corresponding to tool wear, 

which are then transformed into images for model input. 

（4） The model has been trained and assessed using the PHM2010 public cutting dataset, where it 

demonstrated superior recognition accuracy, faster computation speeds, and fewer parameters 

compared to other tool wear recognition algorithms. In practical applications, the model has 

performed excellently. F1 score validation further confirms the RRP-Net model's robustness, 

generalization ability, and stability. 

2.  Proposed model framework 

2.1.  Data preprocessing 

For the collected seven types of signals (force signals in xyz directions, vibration signals in xyz 

directions, and acoustic emission signal), sliding window processing is applied. The signals collected 

from a single tool pass are divided into 100 parts, and each part undergoes time-domain analysis, 

frequency-domain analysis, and time-frequency domain analysis. In the time-domain analysis, the 

absolute mean, peak, root mean square, root amplitude, skewness, kurtosis, waveform factor, impulse 

factor, skewness factor, peak factor, clearance factor, and kurtosis factor of the signals are calculated. 

In the frequency-domain analysis, the centroid frequency, mean square frequency, root mean square 

frequency, and frequency variance are determined. In the time-frequency domain analysis, a total of 24 

characteristic values of wavelet packet energy are calculated. Subsequently, the values of each signal 

are aggregated into a matrix, where the rows represent the seven different types of signals, and the 

columns represent the 24 characteristic values. Finally, these feature matrices are transformed into three-

channel images to serve as the output of data processing and the input to the main model. 

 

2.2.  Main Structure 

In this paper, we improved the backbone network of RepVgg[11]by incorporating a parameter-free 

attention mechanism and integrating the design of ResNet[12], resulting in the RRP-Net model. The main 

structure of the network is shown in Figure 1. The model is composed of the following parts: input layer, 

RRP-Net block, SimAM, average pooling layer, fully connected layer, and output layer. After data 

preprocessing, the image is used as the input to the main model. The RRP-Net block mainly consists of 

three branches: a 3×3 convolution with a batch normalization layer, a 1×1 convolution with a batch 



 

 

 

 

 

 

normalization layer, and a pure batch normalization layer. Then, through convolution kernel re-

parameterization, a new 3×3 convolution kernel is obtained, which integrates all the information from 

the above three branches. The output, after being dimensionally reduced by the average pooling layer, 

is fed into the fully connected layer, resulting in a five-classification model. 

 
Fig.1. RRP-Net Structure 

RRP-Net Block is the most critical module in this network model, which consists of the following parts: 

a 1×1 convolution kernel with BN layer, a 3×3 convolution kernel with BN layer, and a standalone BN 

layer. Adopting this multi-branch structure during training enables the model to capture different 

features of input data from different branches, thereby enhancing the model's ability to express and 

generalize data. In the validation process, we employed a method of structural re-parameterization, 

which merges the convolutional kernel parameters and BN parameters from three branches to ultimately 

obtain a fused 3×3 convolution kernel. The information extracted by this kernel after structural re-

parameterization is consistent with the multi-branch situation during training. The specific process and 

formula of structural re-parameterization are shown in Eq.1. A parameter-free attention mechanism, 

SimAM, is introduced between different stages, which helps to improve the speed of the model[13]. It 

can take any intermediate feature tensor as input and transform it into an output with the same size as 

the input.  
 

（1） 

 

 

 

represents a 3×3 convolution kernel with C1 input channels and C2 output channels,，

  represents a 1×1 convolution kernel with C1 input channels and C2 output channels. We 

use  as the accumulated mean, standard deviation and learned scaling factor and bias of 

              

           
        

          
               

                  

      

                     

                     

                     

                     

            

         

     

     

     

           

                      

              

      

 

   

   

               

             

 

          

   

 

   

                               

                 

                

             



 

 

 

 

 

 

the BN layer following 1×1 conv。  represents the input and   

represents the output of the model, where  represents the convolution operation. 

3.  Experiment Study 

3.1.  Datasets description 

The dataset used in this experiment is the publicly available PHM2010 dataset[15], which includes the 

full lifecycle data of six cutting tools (C1-C6). After each cutting pass, the wear on the back face of the 

tool is measured using a microscope, and seven types of monitoring signals are collected: cutting forces 

in XYZ directions, vibration signals in XYZ directions, and acoustic emission signals. The specific wear 

values of the tools C1, C4, and C6 were published.  

  
Fig. 2. Schematic diagram of the PHM2010 experiment 

 

The experiment was repeated six times under the above cutting conditions for the entire lifecycle of 

each experiment. During the cutting process, three types of sensors were used: a triaxial force sensor to 

collect force signals in three directions, an accelerometer to collect vibration signals in three directions, 

and an acoustic emission sensor to collect acoustic emission signals. At the end of each cutting pass, the 

wear on the side faces of the three cutting teeth was measured offline using a LEICA MZ12 microscope. 

The average wear on the side faces of the three cutting teeth was then calculated as the tool wear value[16]. 

The specific process is shown in the Figure. 2. Based on the tool wear data, k-means clustering analysis 

can classify the tool states into five categories: state 1: 1-30 cutting passes, state 2: 31-130 cutting passes, 

state 3: 131-200 cutting passes, state 4: 201-260 cutting passes, and state 5: 261-315 cutting passes. 

Datasets T1, T2, T3 and the number of images corresponding to each state are shown in Table 1. 

 
Fig. 3. Tool lifecycle wear curves of PHM2010 datasets 

                      

           

         

         

             

                                   
          
          

                  

                 

      
       

            
               



 

 

 

 

 

 

Table 1 Multiple datasets and model details 

Datasets Tool model The number of images in each dataset 

T1 C1 Sharp Normal wear Micro fracture Macro wear breakage 

T2 C4 
3000 10000 7000 6000 5500 

T3 C6 

3.2.  Model training and evaluation 

3.2.1.  Training configuration  

This experiment was conducted on a Windows 10 system, with the training environment set up on 

PyTorch 1.8.1, using an NVIDIA RTX3080 GPU and CUDA 11.1. The learning rate was set to 0.0001. 

Due to the large size of the model parameters, the batch size was set to 16. A smaller batch size allows 

for the use of more complex network structures and helps to prevent model overfitting, thereby 

enhancing the model's generalization ability. The model parameters were iterated using the Adam 

optimizer, which can adaptively adjust the learning rate, offering faster convergence speed and stronger 

robustness, suitable for large-scale and complex learning tasks. 

3.2.2.  Accuracy comparison 

Currently, model performance evaluations primarily use accuracy metrics. In classification tasks, 

accuracy indicates the proportion of correctly classified samples out of the total sample count, with 

values closer to 1 denoting better model performance. This study compared common convolutional 

networks such as ResNet[12], VGG[17], and ConvNet[18], and found that RRP-Net outperforms other 

models in terms of accuracy and convergence speed. As shown in the fig.4., RRP-Net's accuracy steadily 

increases with more epochs. Compared to ResNet50, RRP-Net exhibits better stability, and compared 

to other models, it has faster convergence speed and higher accuracy. In the loss value chart, RRP-Net 

shows the quickest decline in loss values. This study also compiled the highest accuracy achieved during 

training and the average of the top five accuracies. RRP-Net's highest accuracy reached 99.11%, which 

is 2.41% higher than the ConvNet model. The average of the top five accuracies is 98.99%, indicating 

that RRP-Net achieves a very high level in monitoring the wear state of cutting tools. 

  
Fig. 4. Model accuracy and loss curve 

  
Fig.5. Highest model accuracy and average of the top five 



 

 

 

 

 

 

3.2.3.  Performance evaluation 

The confusion matrix plays a very important role in assessing the actual performance of the model, 

demonstrating the model's predictive effectiveness across five different wear states[19]. By analyzing the 

confusion matrix, the model's accuracy, false positive rate, and false negative rate for different states of 

tool wear can be assessed. The figure below shows the confusion matrices for datasets T1, T2, and T3, 

with average accuracies for the five categories being 98.6%, 98.4%, and 97.4% respectively. In the T1 

dataset, the model achieved a 100% prediction accuracy for category 1; in the T2 dataset, it also reached 

a 100% prediction accuracy for category 2. These high-accuracy results demonstrate that RRP-Net is 

very effective in recognizing tool wear under different datasets, proving the model's superior 

performance. 

   
Fig.6. Confusion matrix of datasets T1, T4, and T6 

3.2.4.  Actual application evaluation 

To further discuss the application of the RRP-Net model in practical scenarios, four secondary indicators 

of the confusion matrix were calculated: accuracy, recall, specificity, and F1 score, including both Macro 

F1 score and Micro F1 score. Accuracy measures the model's accuracy in recognizing categories, recall 

indicates the probability of the model successfully identifying true samples when the tool is at the break 

stage, and specificity measures the model's accuracy in predicting negative cases[20]. By analyzing the 

Macro F1 score and Micro F1 score, the model's performance in multi-class problems can be more 

comprehensively assessed, taking into account the balance and imbalance among categories. The 

metrics for the datasets are shown in the Table 2. During the Break stage, the average recall rate for the 

three datasets is 98.18%, with the T2 dataset achieving 99.27%. The average specificity for the three 

datasets is 99.73%, with the T2 dataset even higher at 99.77%. This indicates that the model has a high 

probability of successfully recognizing severely worn tools. The average Macro F1 score and Micro F1 

score of the model are 98.14% and 98.20%, respectively, showing that RRP-Net performs well 

independently in each category and is also very effective overall. 

Studies have shown that when the convolutional kernel size is 3x3, the number of floating-point 

operations per unit time is relatively the highest[11], as shown in the Table 3. This indicates that the 

computer can process more data in a short period of time and perform more complex computational 

tasks. The branch convolutional kernels in the RRP-Net Block have been structurally reparameterized 

into 3x3 kernels, improving the model's computational efficiency and application performance, which 

helps in accurately and timely monitoring the tool wear state, avoiding adverse consequences due to 

excessive tool wear. As the model's performance improves, its deployment scope in the industrial field 

is also further expanded. 
Table 2 Evaluation indicators on the T dataset 

Evaluation indicators  T1 T2 T3 

Accuracy(%)  98.57 99.37 98.00 

Recall(%) 
 

98.18 99.27 97.09 

Specificity(%) 
 

99.73 99.77 99.69 

F1_score(%) 
 

98.45 99.09 97.80 

Macro_F1_score(%)  98.46 98.93 97.03 

Micro_F1_score(%)  98.53 98.92 97.14 



 

 

 

 

 

 

Table 3 Theoretical TFLOPS with different kernel sizes 

Kernel size Theoretical 

FLOPs 

Time 

Usage(ms) 

Theoretical 

TFLOPS 

1×1 420.9 84.5 9.96 

3×3 3788.1 198.8 38.10 

5×5 10522.6 2092.5 10.57 

7×7 20624.4 4394.3 9.38 

4.  conclusion 

This paper proposes a model for monitoring tool wear states based on the RepVgg combined with the 

ResNet framework (RRP-Net). This model can quickly and efficiently predict the wear state of tools, 

which has significant industrial application value. The specific content of this study is as follows: 

(1) By processing multi-sensor signals with a sliding window, each signal is divided into 100 windows, 

and each window signal is analyzed in the time domain, frequency domain, and time-frequency 

domain. After the aforementioned feature processing, 24 features are extracted from each signal, 

resulting in a 7×24 feature matrix. Consequently, a single wear value of the tool corresponds to 

100 of these 7×24 matrices. Subsequently, through image conversion, these 100 matrices are 

transformed into 100 images, serving as the input for RRP-Net. This method not only improves the 

accuracy of tool wear state recognition but also provides reliable input for the tool state recognition 

model. 

(2) The model combines the advantages of RepVgg and ResNet, and includes the SimAM parameter-

free attention mechanism module in the basic model block, which is a computational unit that 

enhances the feature expression capability of convolutional neural networks.  During the training 

phase of the RRP-Net Block, multi-branch training is used, and during the validation phase, the 

convolution kernels are structurally reparameterized, turning multi-branches into a single branch, 

which further speeds up the model's operation while ensuring accuracy. This has promoted the 

deployment of the model in the industrial field. 

(3) The RRP-Net model's predictive accuracy for different tool wear states in the publicly available 

PHM2010 dataset is higher than other convolutional neural network models, such as ResNet50, 

Convnext, and Vgg16, with an accuracy improvement of 2.41% compared to ConvNext. The highest 

prediction accuracies in the T1, T2, and T3 datasets were 98.57%, 99.37%, and 98.00%, respectively, 

with an average accuracy of 98.65%. This demonstrates the superiority of RRP-Net in monitoring 

tool wear states. 

(4) The model was evaluated in practical applications, producing confusion matrices for different 

datasets in T1, T2, and T3, with average prediction accuracies of 98.6%, 98.4%, and 97.4%, 

respectively. Four secondary indicators were also calculated: precision, recall, specificity, and F1 

score. During the Break stage, the average recall value for the three datasets was 98.18%, and the 

average specificity was 99.73%. This shows that the model can effectively recognize severely 

worn tools in practical applications, performs well independently in each category, and is also 

very effective overall, making it a very reliable and effective model for practical operations. 

 

Prospect: This article focuses on tool wear monitoring under a single working condition and will 

consider conducting experiments under varying working conditions to verify the effectiveness of RRP-

Net in monitoring wear under changing working conditions. 

 

 

 

Acknowledgments 

This work was supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province 

(grant number 2023C01167) 



 

 

 

 

 

 

References 

[1] Snr DED. Sensor signals for tool-wear monitoring in metal cutting operations—a review of 

methods[J]. International Journal of Machine Tools and Manufacture, 2000, 40(8): 1073-1098. 

[2] Kurada S, Bradley C. A review of machine vision sensors for tool condition monitoring[J].    

Computers in industry, 1997, 34(1): 55-72. 

[3] Dimla Jr DE, Lister P M, Leighton NJ. Neural network solutions to the tool condition monitoring 

problem in metal cutting—a critical review of methods[J]. International Journal of Machine 

Tools and Manufacture, 1997, 37(9): 1219-1241. 

[4] Teti R, Jemielniak K, O’Donnell G, et al. Advanced monitoring of machining operations[J]. CIRP 

annals, 2010, 59(2): 717-739. 

[5] Yucesan Y A, Dourado A, Viana FAC. A survey of modeling for prognosis and health 

management of industrial equipment[J]. Advanced Engineering Informatics, 2021, 50: 101404. 

[6] Zhou J T, Zhao X, Gao J. Tool remaining useful life prediction method based on LSTM under 

variable working conditions[J]. The International Journal of Advanced Manufacturing 

Technology, 2019, 104: 4715-4726. 

[7] Jin N, Yang F, Mo Y, et al. Highly accurate energy consumption forecasting model based on 

parallel LSTM neural networks[J]. Advanced Engineering Informatics, 2022, 51: 101442. 

[8] Wang J, Yan J, Li C, et al. Deep heterogeneous GRU model for predictive analytics in smart 

manufacturing: Application to tool wear prediction[J]. Computers in Industry, 2019, 111: 1-

14. 

[9] Marei M, El Zaatari S, Li W. Transfer learning enabled convolutional neural networks for 

estimating health state of cutting tools[J]. Robotics and Computer-Integrated Manufacturing, 

2021, 71: 102145. 

[10] Cheng M, Jiao L, Yan P, et al. Intelligent tool wear monitoring and multi-step prediction based 

on deep learning model[J]. Journal of Manufacturing Systems, 2022, 62: 286-300. 

[11] Ding X, Zhang X, Ma N, et al. Repvgg: Making vgg-style convnets great again[C] Proceedings 

of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 13733-13742. 

[12] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C] Proceedings of the 

IEEE conference on computer vision and pattern recognition. 2016: 770-778. 

[13] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural 

information processing systems, 2017, 30. 

[14] Yang L, Zhang R Y, Li L, et al. Simam: A simple, parameter-free attention module for 

convolutional neural networks[C] International conference on machine learning. PMLR, 2021: 

11863-11874. 

[15] Xue Z, Chen N, Wu Y, et al. Hierarchical temporal transformer network for tool wear state 

recognition[J]. Advanced Engineering Informatics, 2023, 58: 102218. 

[16] Zhang X, Lu X, Li W, et al. Prediction of the remaining useful life of cutting tool using the Hurst 

exponent and CNN-LSTM[J]. The International Journal of Advanced Manufacturing 

Technology, 2021, 112: 2277-2299. 

[17] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image 

recognition[J]. arXiv preprint arXiv:1409.1556, 2014. 

[18] Liu Z, Mao H, Wu C Y, et al. A convnet for the 2020s[C] Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition. 2022: 11976-11986. 

[19] Jaen-Cuellar A Y, Osornio-Ríos R A, Trejo-Hernández M, et al. System for tool-wear condition 

monitoring in cnc machines under variations of cutting parameter based on fusion stray flux-

current processing[J]. Sensors, 2021, 21(24): 8431. 

[20] Li R, Wei P, Liu X, et al. Cutting tool wear state recognition based on a channel-space attention 

mechanism[J]. Journal of Manufacturing Systems, 2023, 69: 135-149. 

 

 





(19)国家知识产权局

(12)发明专利申请

(10)申请公布号 

(43)申请公布日 

(21)申请号 202311002585.6

(22)申请日 2023.08.10

(71)申请人 浙江大学

地址 310058 浙江省杭州市西湖区余杭塘

路866号

(72)发明人 武建伟　洪铎　田雅雯　徐凡　

魏乃镇　

(74)专利代理机构 杭州天勤知识产权代理有限

公司 33224

专利代理师 胡红娟

(51)Int.Cl.

B24B 51/00(2006.01)

B24B 49/00(2012.01)

G06T 17/00(2006.01)

G06F 30/20(2020.01)

 

(54)发明名称

一种基于Unity3D的数控磨床状态远程监测

系统

(57)摘要

本发明公开了一种基于Unity3D的数控磨床

状态远程监测系统，包括：实时数据采集模块用

于实时从数控磨床中获取运行状态数据；实时数

据传输模块，用于接收来自实时数据采集模块的

运行状态数据以及经由虚拟磨削仿真模块验证

的加工代码，并基于消息队列遥测传输协议进行

传输；数据可视化模块，用于接收并处理来自实

时数据传输模块的运行状态数据，利用Unity3D

进行可视化展示；虚拟磨削仿真模块，用于获取

输入待检验的加工代码，通过加工代码进行数控

磨床模型的仿真，若加工代码验证无误，则可通

过实时数据传输模块将加工代码下发至数控磨

床的数控系统中。上述系统实现了远程对数控磨

床的有效监测。
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(54)发明名称

一种基于Swin-Transformer的变工况下数

控车刀磨损状态分类方法和装置

(57)摘要

本发明公开了一种基于Swin‑Transformer

的变工况下数控车刀磨损状态分类方法和装置，

方法包括：从数控车床的主轴中采集不同磨损类

型的电流信号，进行数据预处理；将预处理后的

电流信号划分为训练集、验证集和测试集，将电

流信号通过小波包变换得到电流信号的时频图，

对每张时频图标注磨损类别标签后进行图像预

处理；设计基于Swin‑Transformer的网络模型和

预训练参数，输入预处理后的图像，对Swin‑

Transformer网络模型进行优化训练；将待检测

的电 流信号时频图输入 到预训练的 S w i n ‑

Transformer网络模型中，输出识别结果。本发明

将Swin‑Transformer模型应用于时频图数据，能

够有效地捕获图像中的长距离依赖关系，从而适

应不同工况下刀具磨损状态的变化模式，提高识

别的准确性和稳定性。
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