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一、个人申报
（一）基本情况【围绕《浙江工程师学院（浙江大学工程师学院）工程类专业学位研究生工

程师职称评审参考指标》，结合该专业类别(领域)工程师职称评审相关标准，举例说明】

1.对本专业基础理论知识和专业技术知识掌握情况(不少于200字)

在知识掌握层面，首先作为一个在企业实践的学生，知识的掌握对于科研工作至关重要。在

企业的培养环境下，我得以接触到更为系统和深入的专业知识，同时也能通过实际的科研项

目将这些知识运用到实践中。

在企业的培养过程中，我首先巩固了大学期间学到的基础知识。例如，在计算机科学领域，

我通过参与研究所的基础课程复习了数据结构与算法、操作系统原理、计算机网络等基础知

识。这些知识是进行高层次科研工作的基石。

同时，在掌握了基础知识后，我深入学习了与我研究方向相关的专业知识。作为学习无人机

的学生，项目初期，我参与了无人机项目的需求分析和可行性研究。这一阶段让我学会了如

何从实际需求出发，制定详细的项目计划和实施方案。在企业的指导下，我了解了无人机应

用的广泛领域，如农业监测、环境保护、物流配送等，这些都为后续的研究提供了明确的方

向。为我后续进行相关的研究提供了相应的方向。

2.工程实践的经历(不少于200字)

在杭州兵智科技有限公司的实习期间，我深度参与了无人机自主规划控制和自主探索项目的

开发。我的主要职责包括算法设计和实物部署实施，这让我有机会将理论知识应用到实际工

程问题中。

在算法设计阶段，我研究并实现了适用于无人机的路径规划和环境感知算法，主要是基于三

维动力学方程建模，建立优化问题进行求解。我们先使用A*算法搜索出当前的部分路径，然

后基于优化求解器算法求解出最优的局部避障轨迹。

对于无人机自主探索，我采用了基于前沿点的方案，使用旅行商问题进行相关求解，得到探

索的优化顺序。在多无人机协同探索方面，我实现了多旅行商问题算法，通过这一算法进行

多机任务分配，成功实现了多无人机的协同自主探索任务。

实物部署环节充满挑战，我负责将算法集成到无人机的机载处理器系统中，解决了通信延迟

、传感器噪声等实际问题。

3.在实际工作中综合运用所学知识解决复杂工程问题的案例（不少于1000字)

在杭州兵智科技有限公司实习期间，我参与了一个复杂的无人机集群自主探索与控制项目。

该项目旨在开发一套系统，使多架无人机能够在未知环境中协同工作，自主规划路径，避开

障碍物，并高效地完成区域探索任务。这个项目涉及多个工程学科的知识，包括控制理论、

任务分配、多智能体协同等领域的综合应用。

项目中我们面临几个关键挑战：无人机需要在三维空间中实时规划安全路径，同时考虑动力

学约束；如何高效分配探索任务，避免重复工作，最大化探索效率；算法必须在计算资源有

限的嵌入式系统上运行，并满足实时性要求；以及如何处理传感器噪声、通信延迟等实际问

题带来的系统稳定性挑战。

针对三维环境下的路径规划问题，我综合应用了多门课程的理论知识。从高等数学和线性代

数中，我运用向量分析和矩阵变换构建了精确的三维空间模型，并基于经典力学原理建立了

无人机的完整动力学约束方程，包括速度、加速度和角速度限制。在全局路径规划层面，我

应用了计算机科学中的启发式搜索算法，选择了A*算法作为基础框架，通过设计适合三维环

境的启发函数，在可接受的计算复杂度下生成了全局路径骨架。为优化飞行轨迹的平滑性和

可执行性，我构建了一个非线性优化模型，其目标函数以时间最小化为主，同时纳入了避障
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安全距离、动力学可行性等多重约束条件。我选择内点法作为求解工具，通过迭代优化将A*

生成的分段路径转化为满足动力学约束的平滑轨迹，实现了理论与实践的有效结合。这种分

层规划方法既保证了全局路径的最优性，又确保了局部轨迹的可执行性，为无人机在复杂环

境中的自主导航提供了可靠保障。

在未知环境中的多机自主探索是本项目的核心难点。我综合运用了运筹学、图论等学科理论

知识来解决这一复杂问题。首先是将未知环境表示为概率占据栅格地图，并设计了一种高效

的前沿点识别算法。该算法能够在三维空间中快速识别出探索边界上的高信息增益区域，作

为潜在的探索目标点。然后，针对这些目标点，使用TSP算法确定到达这些目标点的顺序，

从而得到了高效的单机探索方法。针对多机协同探索问题，我将问题进一步扩展为多旅行商

问题(MTSP)，并结合任务分配的思想，对于每架无人机的任务进行分配，进而完成了高效的

集群自主探索方法。

在系统测试阶段，我面临了传感器噪声和环境不确定性带来的挑战。为解决无人机实时定位

问题，我采用了视觉惯性里程计(VIO)技术，具体实现上选择了英特尔RealSense 

T265跟踪相机作为定位方案的核心。T265集成了双目鱼眼相机和IMU传感器，内置ASIC处理

芯片可直接输出六自由度姿态估计，大大简化了系统集成复杂度。我负责将T265模块集成到

无人机平台上，优化了安装位置以减少振动干扰，并开发了程序将T265的位姿数据转换为无

人机控制系统所需的坐标系格式。

项目实施过程中，我也遇到了一些意料之外的问题。例如，在多机实验中，我们发现了算法

理论上的正确性与实际系统中的可靠性之间存在差距。针对这个问题，我采用了系统化的测

试方法，包括单元测试、集成测试和场景模拟，识别了关键算法模块在实际环境中的边界情

况并针对性地进行了优化。

通过这个项目，我深刻体会到了理论知识与工程实践的紧密联系。对于每个技术难点，我都

需要回顾并整合多门课程的知识，有时甚至需要查阅最新的研究论文来寻找解决方案。这种

综合应用知识解决复杂工程问题的能力，是我在学校课程中难以获得的宝贵经验。
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（二）取得的业绩（代表作）【限填3项，须提交证明原件（包括发表的论文、出版的著作、专利

证书、获奖证书、科技项目立项文件或合同、企业证明等）供核实，并提供复印件一份】

1. 
公开成果代表作【论文发表、专利成果、软件著作权、标准规范与行业工法制定、著作编写、科技

成果获奖、学位论文等】

成果名称

成果类别 

[含论文、授权专利（含

发明专利申请）、软件著

作权、标准、工法、著作

、获奖、学位论文等]

发表时间/

授权或申

请时间等

刊物名称

/专利授权

或申请号等

本人

排名/

总人

数

备注

基于未知环境下四旋翼

飞行器时间最优避障在

线规划方法

发明专利申请
2024年07

月01日

申请号：20

2410870930

.6

1/2  

Safety-critical 

Online Quadrotor 

Trajectory Planner 

for Agile Flights in 

Unknown Environments

会议论文
2025年01

月28日

Internatio

nal 

Conference 

on 

Robotics 

and 

Automation

1/5
已接受，

未收录

      

2.其他代表作【主持或参与的课题研究项目、科技成果应用转化推广、企业技术难题解决方案、自

主研发设计的产品或样机、技术报告、设计图纸、软课题研究报告、可行性研究报告、规划设计方

案、施工或调试报告、工程实验、技术培训教材、推动行业发展中发挥的作用及取得的经济社会效

益等】

 









国 家 知 识 产 权 局

 
200101 纸件申请，回函请寄：100088 北京市海淀区蓟门桥西土城路 6 号  国家知识产权局专利局受理处收
2023.03 电子申请，应当通过专利业务办理系统以电子文件形式提交相关文件。除另有规定外，以纸件等其他形式提交的

文件视为未提交。

310013
浙江省杭州市西湖区古墩路 701 号紫金广场 B 座 1103 室 杭州求是

专利事务所有限公司

刘静(0571-87911726-809)
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2024 年 07 月 01 日

申请号：202410870930.6 发文序号：2024070101672840  

专 利 申 请 受 理 通 知 书

根据专利法第 28 条及其实施细则第 43 条、第 44 条的规定，申请人提出的专利申请已由国家知识产权局

受理。现将确定的申请号、申请日等信息通知如下：

申请号：2024108709306

申请日：2024 年 07 月 01 日

申请人：浙江大学

发明人：袁嘉喆,李硕

发明创造名称：基于未知环境下四旋翼飞行器时间最优避障在线规划方法

经核实，国家知识产权局确认收到文件如下：

权利要求书 1 份 4 页,权利要求项数 ： 10 项

说明书 1 份 13 页

说明书附图 1 份 2 页

说明书摘要 1 份 1 页

专利代理委托书 1 份 2 页

发明专利请求书 1 份 4 页

实质审查请求书 文件份数：1 份

申请方案卷号：刘-241-155-政

  

提示：

    1.申请人收到专利申请受理通知书之后，认为其记载的内容与申请人所提交的相应内容不一致时，可以向国家知识产权局

请求更正。

    2.申请人收到专利申请受理通知书之后，再向国家知识产权局办理各种手续时，均应当准确、清晰地写明申请号。

审 查 员：自动受理 审查部门：初审及流程管理部

联系电话：010-62356655



国 家 知 识 产 权 局

 
210305 纸件申请，回函请寄：100088 北京市海淀区蓟门桥西土城路 6 号  国家知识产权局专利局受理处收
2023.03 电子申请，应当通过专利业务办理系统以电子文件形式提交相关文件。除另有规定外，以纸件等其他形式提交的

文件视为未提交。

310013
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刘静(0571-87911726-809)
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申请号或专利号：202410870930.6 发文序号：2024091000248020  

申请人或专利权人：浙江大学 

发明创造名称：基于未知环境下四旋翼飞行器时间最优避障在线规划方法

发 明 专 利 申 请 公 布 通 知 书

上述专利申请，经初步审查，符合专利法实施细则第 50 条的规定。根据专利法第 34 条的规定，该申请

在 40 卷 3701 期 2024 年 09 月 10 日专利公报上予以公布。

提示：

    1.发明专利申请人可以自申请日起 3 年内提交实质审查请求书、缴纳实质审查费，申请人期满未提交实质审查请求书或期

满未足额缴纳实质审查费的，该申请被视为撤回。

    2.专利费用可以通过网上缴费、银行/邮局汇款、直接向代办处或国家知识产权局专利局缴纳。缴费时应当写明正确的申请

号/专利号、费用名称及分项金额，未提供上述信息的视为未办理缴费手续。了解缴费更多详细信息及办理缴费业务，请登录国

家知识产权局官方网站。 

    3.申请人可以访问国家知识产权局政府网站（www.cnipa.gov.cn），在专利检索栏目中查询公布文本。如果申请人需要纸件

申请公布单行本的纸件，可向国家知识产权局请求获取。

    4.申请文件修改格式要求：

    对权利要求修改的应当提交相应的权利要求替换项，涉及权利要求引用关系时，则需要将相应权项一起替换补正。如果申

请人需要删除部分权项，申请人应该提交整理后连续编号的部分权利要求书。

    对说明书修改的应当提交相应的说明书替换段，不得增加和删除段号，仅只能对有修改部分段进行整段替换。如果要增加

内容，则只能增加在某一段中；如果需要删除一个整段内容，应该保留该段号，并在此段号后注明：“此段删除”字样。段号

以国家知识产权局回传的或公布/授权公告的说明书段号为准。

    对说明书附图修改的应当以图为单位提交相应的替换附图。

    对说明书摘要文字部分修改的应当提交相应的替换页。对摘要附图修改的应当重新指定。

    同时，申请人应当在补正书或意见陈述书中标明修改涉及的权项、段号、图、页。

审 查 员：自动审查
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审查部门：初审及流程管理部
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、



Safety-critical Online Quadrotor Trajectory Planner
for Agile Flights in Unknown Environments

Jiazhe Yuan1, Dongcheng Cao1, Jiahao Mei2, Jiming Chen1, Fellow, IEEE, and Shuo Li1

Abstract— Autonomous high-speed flight in unknown, clut-
tered environments is essential for a variety of quadrotor
applications, such as inspection, search, and rescue. In this
study, we propose a novel trajectory planner designed to achieve
efficient, high-speed, collision-free flights in such environments.
The proposed approach begins by generating a safe flight
corridor based on the path found by Lazy Theta*, representing
the safe regions with polytopic sets. These sets are then used to
define discrete-time control barrier function (DCBF), ensuring
the quadrotor stays within safe bounds during flight. By
selecting a single waypoint ahead of the quadrotor on the path
as the next waypoint, the trajectory is optimized by considering
both the total flight time and safety constraints. Extensive
simulations and real-world experiments have confirmed our
method’s feasibility, demonstrating its capability for high-speed
performance and reliable obstacle avoidance. [video4]

I. INTRODUCTION

In the past decade, the application scenarios of quadro-
tors have been substantially broadened owing to the rapid
development of agile trajectory planning methods. Among
these planning methods, those for obstacle avoidance have
increasingly garnered research interest due to their promising
application prospects, including inspection, rescue operations
and aerial videography [1], [2], [3].

Trajectory planning in cluttered environments has always
been a challenging problem [4]. Planning a collision-free
trajectory with limited computational resources imposes un-
avoidable challenges, particularly when it comes to real-time
planning in unknown environments and meeting the demands
of high-speed performance. Planning collision-free trajec-
tories under these constraints requires efficient algorithms
capable of rapid adaptation to unknown surroundings while
ensuring safe and stable flights.

To solve this problem, a common approach is to formulate
the trajectory planning task as an optimization problem.
These methods often use polynomial trajectory representa-
tion and are based on the differential flatness property [5],
which generates the collision-free motions in the flat output
space of quadrotors. In these studies, the obstacle avoidance
task is taken into account by incorporating corresponding
penalty functions or constraints into the optimization prob-
lem. For example, a Euclidean Signed Distance Field (ESDF)

1Authors are with the College of Control Science and Engineering, Zhe-
jiang University, Hangzhou 310027, China shuo.li@zju.edu.cn

2Jiahao Mei is with the Department of Automation, Zhejiang University
of Technology, Hangzhou 310023, China.
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62088101.

4https://www.youtube.com/playlist?list=PLJFduoH7Q
ICOhcIX3JFsZwB4IgS4_-sPt

Fig. 1: The real-world experiment of our study.

[6] is often constructed to represent a neighborhood area.
Based on this, the trajectory in [7], [8] is a uniform B-spline
optimized with penalty functions to avoid collisions. Addi-
tionally, generating a safe flight corridor (SFC) is another
common approach to represent the safe flight region [9]. The
safe region is denoted by 3-dimensional polytopic sets. These
polytopic sets are further used to form safety constraints in
the optimization problem.

While online obstacle avoidance capabilities have been
demonstrated in [10] and [11], these approaches exhibit
limited velocities during flight caused by the insufficient
incorporation of time-optimality criteria within their trajec-
tory planning frameworks. Although [12] considers time-
optimality to enhance trajectory performance, it still faces
the fundamental limitations described in [13]: the inherent
smoothness of polynomial representations constrains control
inputs, preventing truly time-optimal trajectories. Another
recent work [14] utilizes the framework of Model Predic-
tive Contouring Control [15], meanwhile incorporating the
Discrete-time Control Barrier Function (DCBF) technique
[16] as safety constraints into the framework. However, its
high-speed performance is based on the assumption that the
obstacle-dense environment is already known.

Although the aforementioned works have achieved notable
progress in high-speed flight capabilities, their performance
remains suboptimal. Methods from autonomous drone rac-
ing research [13], [17] have shown significant potential,
where multi-waypoint flight tasks have been extensively
studied with demonstrated success in time optimal trajectory

https://www.youtube.com/playlist?list=PLJFduoH7QICOhcIX3JFsZwB4IgS4_-sPt
https://www.youtube.com/playlist?list=PLJFduoH7QICOhcIX3JFsZwB4IgS4_-sPt
https://www.youtube.com/playlist?list=PLJFduoH7QICOhcIX3JFsZwB4IgS4_-sPt


generation. For time-optimality considerations, [18] treats
the total flight time as an optimization variable and the
objective function in the optimization problem. Although
time-optimal flight is achieved, the high computational cost
prohibits online generation of such trajectories. A recent
work [19] seeks to overcome this limitation by fixing the
time when passing through the waypoints and introducing
a warm-up technique to provide a suitable initial solution.
These improvements significantly reduce computation time
while ensuring time optimality. Both studies incorporate the
quadrotor’s dynamic model as constraints during the trajec-
tory planning process, avoiding the limitations inherent to the
smoothness of polynomial trajectories, thereby significantly
improving speed performance. However, they primarily focus
on sequential multi-waypoint flight tasks in open terrains and
neglect the challenge of cluttered environments.

In this work, we address the problem of online high-
speed collision-free trajectory planning in unknown environ-
ments. To solve this problem, we propose an optimization
framework that ensures both quadrotor safety and high-speed
performance, while maintaining low computational cost. In
the front-end processing, first we find an initial collision-
free path using Lazy Theta* method and generate a safe
flight corridor to provide the polytopic sets denoting the
safe flight region, then we design a discrete-time control
barrier function (DCBF) to serve as safety constraints in
the following trajectory planning process. Furthermore, to
overcome the increased computational time and performance
limitations caused by using multiple waypoints along the
collision-free path, we select one single waypoint ahead
of the quadrotor on the path as the next waypoint. In the
following trajectory planning process, we treat time as both
an optimization variable and part of the objective function,
while utilizing discrete-time control barrier function (DCBF)
constraints to guarantee safety in cluttered environments.

The pipeline of this work is shown in Fig. 2, and the
contributions of this work are listed as follows:

1) We propose a novel quadrotor trajectory planner that
achieves online trajectory planning for high-speed obstacle
avoidance flight tasks.

2) Our planning method achieves high-speed obstacle
avoidance by leveraging full quadrotor dynamics, using
DCBF constraints to maintain dynamic feasibility while
ensuring safe navigation through cluttered environments.

3) We validate the effectiveness and robustness of our
proposed method through extensive experiments both in
simulation and real-world scenarios, demonstrating its su-
periority in achieving both high-speed and reliable obstacle
avoidance.

II. FRONT-END PROCESSING

In this section, we first compute an initial collision-free
path (Step 1 in Fig. 3) using Lazy Theta*[20], followed
by the construction of a safe flight corridor (Step 2 in Fig.
3) based on the computed path. Subsequently, we design
a discrete-time control barrier function (DCBF) (Step 3 in

Front-end 
Processing

Trajectory 
Optimization

Path Searching

Safe Flight
 Corridor

DCBF
Constraints

Warm-up
Problem

Trajectory
Optimization

Goal

Fig. 2: The framework diagram of our study.

Fig. 3) to ensure precise obstacle avoidance by leveraging
the polytopic sets derived from the safe flight corridor.

A. Path Searching and Safe Flight Corridor Generation

To generate efficient collision-free initial paths, we employ
the Lazy Theta* algorithm [20]. This approach improves
upon traditional A* by eliminating unnecessary waypoints
through line-of-sight checks, resulting in shorter paths while
maintaining comparable computational efficiency.

We construct a safe flight corridor around the waypoints
generated by the Lazy Theta* algorithm [21]. This corridor
consists of convex polytopic sets that explicitly define the
safe flight region. These convex sets are crucial to our
method, as they enable the generation of a precise obstacle
avoidance trajectory, which will be further elaborated in
Section III. The safe flight corridor, denoted as C, is the
union of NP convex polytopic sets Ci, defined as follows:

C =
NP⋃
i=1

Ci,

Ci =
{
p ∈ R3 | AT

j p ≤ bj , j = 1, . . . , Nfi

}
,

(1)

where Aj ∈ R3 represents the normal vector of the jth facet,
bj ∈ R denotes the offset of the jth facet, and Nfi indicates
the number of facets in the ith polytopic set.

B. Obstacle Avoidance with DCBF

Since the polytopic sets from the safe flight corridor
alone do not ensure obstacle avoidance, we introduce the
discrete-time control barrier function (DCBF) to regulate
the quadrotor’s trajectory. The discrete-time control barrier
function (DCBF) is a mathematical tool [22] used to ensure
the safety of discrete-time dynamic systems by defining a
safe set for quadrotor states. By establishing a safe region
in the state space, it enforces state constraints, guiding the
quadrotor’s trajectories to remain within the safe set.

The discrete-time control barrier function (DCBF) h :
X → R, where X ⊂ Rn denotes the state space, is
designed to keep the quadrotor within a predefined safe set
by regulating its movement over time. The safe set S , which
defines the safe range of quadrotor states within the state
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Step4: Trajectory Generation

Step1：Path Searching
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path waypoints
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Fig. 3: Methodology Overview. The process begins with Step 1, where an initial collision-free path is computed. In Step 2, a safe flight
corridor (SFC) is generated. Step 3 involves the formulation of discrete-time control barrier function (DCBF) constraints based on the
SFC. Finally, in Step 4, after selecting a specific waypoint from the computed path, the trajectory is optimized to achieve high-speed
motion while adhering to the DCBF safety constraints to ensure obstacle avoidance.

space under safety constraints, is defined as the 0-superlevel
set of the discrete-time control barrier function (DCBF):

S := {x ∈ X : h(x) ≥ 0}, (2)

where x represents quadrotor states and x ∈ X ⊂ Rn. This
formulation ensures that as long as h(x) ≥ 0, the quadrotor
states remain within the safe region S .

With the convex polytopic sets provided by safe flight
corridor in Section II-A, we specifically design the discrete-
time control barrier function (DCBF) using the Euclidean
distance between the quadrotor and each facet of the current
polytopic set differing from a safe distance constant dsafe.
When the quadrotor reaches the ith convex polytopic set C,
the corresponding DCBF is designed as follows:

hi(x) =
|AT

j xp − bj |
||Aj ||

− dsafe,

j = 1, 2, . . . , Nfi,

(3)

where xp ⊂ R3 denotes the current position of the quadrotor,
and dsafe denotes the necessary safe distance between the
quadrotor and the boundary of the safe flight corridor.

Given the definition of the DCBF which ensures that the
quadrotor states remain within the safe set S , it becomes
necessary to impose additional constraints to regulate how
quickly the system approaches the boundary of this set.
Similar to [23], we impose a decay condition on h(x),
ensuring that the function value decreases at a controlled rate
as the quadrotor states evolve over time. This decay condition
not only maintains safety by preventing the system from
exiting the safe set too quickly, but also provides flexibility in
system control by balancing safety with trajectory feasibility.
Following this principle, the exponential decay condition can
be expressed as follows:

h(xk+1) ≥ γk · h(xk), 0 ≤ γk ≤ 1, (4)

where the DCBF decreases between successive time steps
at a decay rate γk. Therefore, given a valid DCBF h(x),

imposing constraint (4) in an optimization problem ensures
system safety by generating collision-free trajectories. How-
ever, a fixed decay rate γk leads to a tradeoff between
system safety and feasibility of a collision-free trajectory.
Reducing the decay rate enlarges the feasible domain under
the constraint (4) but meanwhile results in a quick approach
to the boundary of the safe set, denoted by ∂S := {x ∈ X :
h(x) = 0}. This rapid approach can make the trajectory
unsafe. Conversely, increasing the decay rate prioritizes
safety but reduces feasibility [24]. To address this challenge,
we introduce a slack variable ηk into DCBF constraints as
follows:

h(xk+1) ≥ γk · ηk · h(xk), 0 ≤ γk ≤ 1, (5)

where the relaxing variable ηk is optimized with other
variables inside an optimization problem, which resolves the
tradeoff between system safety and collision-free trajectory
feasibility.

III. TRAJECTORY OPTIMIZATION

In this section, building upon the path and DCBF con-
straints introduced in Section II, we present the detailed
process of trajectory planning. A waypoint on the path
located at a specific distance ahead of the quadrotor is
selected as the next required waypoint. The trajectory is then
generated with a focus on both high-speed motion and DCBF
safety constraints (Step 4 in Fig. 3). This results in a real-
time planning framework that dynamically selects waypoints
while optimizing for high-speed and collision-free flight.

A. Quadrotor Dynamics

We utilize the same quadrotor dynamical model as pre-
sented in [18]. The dynamics of the quadrotor are given by:

ẋ =

ṗv̇
q̇

 =


v

g +R(q)zBT
1
2Λ(q)

[
0 ωT

] (6)



where T = [0, 0, T ]T represents the mass-normalized thrust
vector, R(q) denotes the rotation matrix, zB is the unit
vector along the body z-axis and Λ(q) is the quaternion
kinematics matrix. The variables p, v, q and ω represent
the position, inertial velocity, attitude quaternion, and body
rate, respectively. To achieve smoother thrust transitions, we
define the control input as u = [∆T,ωT ]T , where ∆T
represents the thrust rate with Ṫ = ∆T , and ω are the body
angular rates.

The discrete-time formulation of (6) is also derived, which
is used in the following optimization process.

xk+1 = f(xk,uk, dtk) (7)

B. Optimization Formulation with Safety Constraints

1) Trajectory Planning: The trajectory generation method
proposed in this work accounts for both obstacle avoidance
and the minimization of the total flight time. Specifically,
time is treated as an optimization variable and integrated
into the objective function to ensure a high-speed trajectory.
Additionally, the previously introduced DCBF constraints (5)
are imposed in the optimization process, thereby guarantee-
ing collision-free trajectories throughout the flight.

Generating trajectories based on multiple waypoints in
Section II-A leads to a more heavy computational burden.
Therefore, in this study, to generate optimal trajectories
online, we select the waypoint which is located 2m ahead
of the quadrotor, as the next waypoint pw (the red point
in Fig. 3) and discard all the waypoints between the current
position of the quadrotor and pw. Similar to [19], to generate
the optimal trajectory, we fix the number of the intermediate
nodes Ntr (the black points in Fig. 3). In other words, the
trajectory to be generated is discretized into Ntr segments,
each with a sampling interval dt > 0. Consequently, the total
flight time can be obtained as follows and our optimization
target is to minimize this flight time Pt:

Pt = Ntr · dt. (8)

In addition, penalties on ηk (the slack variable for DCBF
constraints) and uk (the control input) are incorporated
into the objective function, which prevents the solver from
selecting these variables arbitrarily. The introduction of these
additional penalties has been demonstrated as crucial for
maintaining stability in nonlinear optimization formulations
[25], [26]. Without them, the generated solutions often ex-
hibit excessive noise, rendering the control inputs impractical
for real-world flight scenarios. To ensure obstacle perception
during flight, we compute the yaw angle difference ∆ψ as
∆ψ = ψdesired − ψNtr , where the desired yaw angle ψdesired
is derived from the direction vector pointing to the next
waypoint. Inspired by [27], to ensure quadrotor safety, we
set the desired velocity vdesire according to the complexity
of the environment. A penalty function:

Pv =

Ntr∑
k=1

max(0, ∥vk∥ − vdesire) (9)

is introduced to constrain velocities from exceeding the
sampling threshold.

Finally, the proposed collision-free optimization problem,
incorporating both the DCBF constraints (5) and dynamic
constraints (7), can be formulated as follows:

min
xk,uk,dt,ηk

Pt + Pv + ∥ηk∥2Qη + ∥ωk∥2Qω
+ ∥∆T k∥2Q∆T

+ ∥∆ψ∥2Q∆ψ

s.t. ∥pn − pw∥22 ≤ δ2i

xlb ≤ xk ≤ xub,x0 = xinit

Tlb ≤ Tk ≤ Tub

ulb ≤ uk ≤ uub

the constraints in(5)(7)

(10)

where n = 1, 2, ..., Ntr denotes the number of the current
time step.

2) Online Replanning with Warm-up Technique: Due to the
presence of nonlinear dynamic constraints, solving Problem
(10) without a suitable initial solution leads to either an
infeasible solution which violates the given constraints or
an optimal but computationally expensive solution. Similar
to [19], we formulate a preliminary optimization problem to
serve as a warm-up technique prior to solving Problem (10),
providing an initial solution. This ensures both the quality of
the final solution and a manageable computation time when
using the interior-point method.

In the preliminary optimization problem, first we relax
the waypoint, dynamics, and DCBF constraints by integrat-
ing them into the objective function using penalty terms.
Specifically, we define the penalty functions as follows:
Pw = ∥pNtr − pw∥22 for the waypoint constraint, Pd =∑Ntr

k=0 ∥xk+1−f(xk,uk, dt0)∥22 for the dynamics constraint,
where dt0 is pre-assigned. We design an adaptive strategy
to assign dt0 a corresponding value based on time-optimal
trajectories for a point mass. The minimum time required
to reach the next waypoint is determined by solving the
time-optimal trajectory for a point mass, applying maximum
acceleration amax from the current position pc and velocity
vc, where the equation vctmin + 1

2amaxt
2
min = pc − pw

holds. Once the minimum time tmin is obtained, dt0 is
calculated by dt0 = tmin/Ntr.

Additionally, penalties on ηk and uk are retained in the
objective function to ensure the stability of the preliminary
optimization problem. The final formulation of the prelimi-
nary optimization problem is formulated as follows:

min
xk,uk,ηk

Pw + Pd + ∥ηk∥2Qη + ∥ωk∥2Qω
+ ∥∆T k∥2Q∆T

s.t. xlb ≤ xk ≤ xub,x0 = xinit

ulb ≤ uk ≤ uub

Tlb ≤ Tk ≤ Tub

(11)

By appropriately selecting dt0 and utilizing the interior point
method, the solution to the preliminary optimization Problem



TABLE I: Comparison between with EGO-Planner-v2[28] and our method. The comparison is conducted in two environments with
different obstacle densities. The metrics displayed in the table are flight time, average velocity, peak velocity, and flight distance, all
presented in the format of mean ± standard deviation, as well as the success rate.

Density
Method

Flight Time (s) Velocity (m/s, Mean ± Std. Dev.) Flight Distance (m) Success Rate

(obs/m²) (Mean ± Std. Dev.) Avg. Vel. Peak Vel. (Mean ± Std. Dev.) (%)

0.15
EGO-Planner-v2(vmax = 10) 14.011 ± 2.404 3.883 ± 0.608 9.440 ± 0.313 53.001 ± 0.926 100

Our Method (vmax = 10) 7.972 ± 0.093 6.302 ± 0.074 9.991 ± 0.141 50.293 ± 0.096 100

0.3
EGO-Planner-v2 (vmax = 8) 17.625 ± 1.576 3.146 ± 0.287 7.972 ± 0.260 54.175 ± 1.099 90
EGO-Planner-v2(vmax = 10) 14.333 ± 2.357 3.886 ± 0.414 9.572 ± 0.438 55.467 ± 3.294 60

Our Method (vmax = 10) 8.692 ± 0.190 5.825 ± 0.126 9.080 ± 0.027 50.658 ± 0.078 100

 

(a) Sparse obstacle environments with a density of 0.15 obs/m²

 

(b) Dense obstacle environments with a density of 0.30 obs/m²

Fig. 4: Simulation results: Trajectory and Velocity Performance in Sparse and Dense Obstacle Environments. We present 2 representative
trajectories from 10 repeated experiments, which exhibit slight variations but consistently demonstrate similar overall speed and time
performance, shown in Table I. This consistency highlights the stability of our method in performing real-time trajectory planning tasks.

(11) can be obtained, which serves as the initialization for
Problem (10).

Furthermore, to facilitate online collision-free trajectory
generation, both Problem (10) and Problem (11) are solved
in a receding horizon fashion. Specifically, the quadrotor
computes trajectories within a limited horizon and continu-
ously updates them at a high frequency, ensuring both system
safety and low computation time.

IV. SIMULATION EXPERIMENT

In this section, we conduct a series of simulation ex-
periments to evaluate the advantages of our method in
comparison with existing approaches. The simulations are
implemented in C++ using the ROS communication frame-
work. The initial collision-free path searching, detailed in
Section II-A, is conducted in simulation with a frequency
of 50Hz. As detailed in Section III, during each iteration of
trajectory generation, the number of intermediate nodes is
set to Ntr = 10. The optimization problem (10) is solved
using CASADI [29] as the code generation tool and IPOPT
[30] as the solver. The solving time is about 20 ms on a
laptop with an Intel I7-11800H CPU with a base frequency
of 2.5GHz and RAM of 32G.

As an online trajectory generation method, MINCO [12]
has shown excellent performance in obstacle avoidance,
ensuring trajectory safety in both sparse and dense envi-
ronments. Therefore, we selected the MINCO-based on-
line obstacle avoidance planner, EGO-Planner-v2[28], as the
baseline for our comparative experiments. We evaluate the
performance of our method against the EGO-Planner-v2 with
single drone deployment, by comparing key metrics such as
success rate, average velocity, maximum velocity, and flight
time. The comparison is conducted in two environments
with different obstacle densities. One environment features
a sparse distribution of cylindrical obstacles with a density
of 0.15 obs/m2, while the other features a denser distribu-
tion with a density of 0.3 obs/m2. In both scenarios, the
flight tests take place within a confined space measuring
40m × 15m × 5m. The minimum distance between any
two obstacles is maintained at 1m. The dynamical limits
for EGO-Planner-v2 are set to maximum acceleration and
maximum jerk, which correspond to the same maximum
thrust and thrust change rate in our method. To compare the
stability performance of our method against EGO-Planner-
v2, the simulation experiments under each configuration are
repeated 10 times, and all reported results represent the



Fig. 5: The snapshot of our quadrotor.

average of these repeated trials.
As shown in Table I and Fig. 4 , our method consis-

tently outperforms EGO-Planner-v2 in both sparse and dense
environments across various metrics, including flight time,
velocity, and success rate. In the sparse environment with a
density of 0.15 obs/m², EGO-Planner-v2 achieves a 100%
success rate, but its average velocity is limited to 3.88 m/s,
resulting in a longer flight time of 14.01 s. In contrast, our
method, maintains a 100% success rate while significantly
increasing the average velocity to 6.30 m/s, reducing the
flight time to 7.97 s.

In the dense environment with a density of 0.3 obs/m²,
EGO-Planner-v2 shows a notable decline in performance.
When its maximum velocity is limited to vmax = 10 m/s,
its success rate drops dramatically to 60%, with an average
velocity of 3.89 m/s and a longer flight time of 14.33 s due
to trajectory tracking errors increasing during sharp turns.
Even with a reduced limitation vmax = 8 m/s, EGO-Planner-
v2 only achieves a success rate of 90%, while its average
velocity remains lower at 3.15 m/s, leading to an increased
flight time of 17.63 s. On the other hand, our method,
illustrated in Fig. 4(b), consistently maintains a 100% success
rate in both configurations, with an average velocity of
5.83 m/s in the dense environment and a significantly shorter
flight time of 8.69 s. Moreover, our method demonstrates
more efficient trajectories, covering shorter distances than the
EGO-Planner-v2, which traverses more ground due to less
optimal path planning. In both environments, our method
achieves superior stability, as evidenced by consistently
higher success rates, faster velocities, and shorter flight times,
outperforming EGO-Planner-v2 across all metrics.

V. REAL-WORLD EXPERIMENT

Our experimental setup features a custom-developed
quadrotor equipped with an Intel RealSense D435 depth cam-
era for real-time mapping and a Jetson Orin NX for onboard
processing, as shown in Fig. 5. The quadrotor weighs 338 g
and features a thrust-to-weight ratio of 3.5, providing stable
flight performance. For precise state estimation, we utilize
a motion capture system that tracks the quadrotor’s position
and velocity. All experiments are conducted within a 5 m
× 5 m × 2.5 m free-flight space, as shown in Fig. 1. The
key parameters for trajectory generation, including waypoint
selection and intermediate point configuration, are set iden-
tical to those used in the simulation experiments described
in Section IV.

TABLE II: Flight Results of Experiments

V max Limit (m/s) Time (s) Max Speed (m/s) Avg Speed (m/s)

4 2.97 4.04 3.0
6 2.80 5.95 3.5

Fig. 6: Trajectory results and rviz visualization in the real-world
experiments with the maximum velocity limit of 6 m/s.

In real-world experiments, the quadrotor departs from a
designated hover point, autonomously generates a collision-
free high-speed trajectory, and completes the flight by reach-
ing the designated endpoint, where it hovers again. Each
trajectory’s flight time is determined by the time interval
between the two hover points. Specifically, the starting and
ending points are set as [-2.5, 1, 0.7] m and [2.2, -3.5, 0.7] m,
respectively. To further evaluate the stability of our method,
we conduct a series of experiments under different maximum
velocity limits set to 4 m/s and 6 m/s respectively, aiming to
assess its performance across various velocity scenarios.

Fig. 6 and Table II illustrate the quadrotor’s trajectory
results under these varying maximum velocity limits. The
data shows that increasing the velocity limit leads to a shorter
flight time and higher overall speeds. The drone’s ability
to nearly reach the specified velocity limits in both cases
suggests effective control and robust performance in high-
speed scenarios. This experiment demonstrates the feasibility
of the proposed method in the real world and also its
adaptability to different speed constraints.

VI. CONCLUSION

This paper presents a novel trajectory planning frame-
work tailored for high-speed, obstacle-avoidance flights in
unknown environments. By utilizing Lazy Theta* to generate
a safe flight corridor and incorporating discrete-time control
barrier functions (DCBFs) for safety constraints. Our method
ensures collision-free navigation while maintaining real-time
performance. Through comprehensive simulations and real-
world experiments, our method consistently demonstrates
superior performance compared to existing approaches.

Future work will focus on conducting physical experi-
ments in environments with higher obstacle densities and
conducting comprehensive field trials in natural settings.
Additionally, we plan to adapt the method for multi-agent
trajectory planning to enable efficient coordination in clut-
tered airspace. These efforts aim to enhance quadrotors’
capabilities in more complex real-world environments.



REFERENCES

[1] D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” nature, vol. 521, no. 7553, pp. 460–466,
2015.

[2] G. Loianno and D. Scaramuzza, “Special issue on future challenges
and opportunities in vision-based drone navigation.,” Journal of Field
Robotics, vol. 37, no. 4, 2020.

[3] X. Guo, Y. He, L. Shangguan, Y. Chen, C. Gu, Y. Shu, K. Jamieson,
and J. Chen, “ Mighty: Towards Long-Range and High-Throughput
Backscatter for Drones ,” IEEE Transactions on Mobile Computing,
vol. 24, pp. 1833–1845, Mar. 2025.

[4] G. Chen, D. Sun, W. Dong, X. Sheng, X. Zhu, and H. Ding,
“Computationally efficient trajectory planning for high speed obstacle
avoidance of a quadrotor with active sensing,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 3365–3372, 2021.

[5] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference
on robotics and automation, pp. 2520–2525, IEEE, 2011.

[6] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of
sampled functions,” Theory of computing, vol. 8, no. 1, pp. 415–428,
2012.

[7] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transac-
tions on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.

[8] W. Ding, W. Gao, K. Wang, and S. Shen, “An efficient b-spline-based
kinodynamic replanning framework for quadrotors,” IEEE Transac-
tions on Robotics, vol. 35, no. 6, pp. 1287–1306, 2019.

[9] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1688–1695,
2017.

[10] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 478–485, 2020.

[11] B. Zhou, F. Gao, J. Pan, and S. Shen, “Robust real-time uav replanning
using guided gradient-based optimization and topological paths,” in
2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1208–1214, IEEE, 2020.

[12] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained tra-
jectory optimization for multicopters,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 3259–3278, 2022.

[13] D. Hanover, A. Loquercio, L. Bauersfeld, A. Romero, R. Penicka,
Y. Song, G. Cioffi, E. Kaufmann, and D. Scaramuzza, “Autonomous
drone racing: A survey,” IEEE Transactions on Robotics, 2024.

[14] J. Qiu, Q. Liu, J. Qin, D. Cheng, Y. Tian, and Q. Ma, “Pe-planner:
A performance-enhanced quadrotor motion planner for autonomous
flight in complex and dynamic environments,” IEEE Robotics and
Automation Letters, 2024.

[15] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive
contouring control for time-optimal quadrotor flight,” IEEE Transac-
tions on Robotics, vol. 38, no. 6, pp. 3340–3356, 2022.

[16] Z. Jian, Z. Yan, X. Lei, Z. Lu, B. Lan, X. Wang, and B. Liang,
“Dynamic control barrier function-based model predictive control to
safety-critical obstacle-avoidance of mobile robot,” in 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 3679–
3685, IEEE, 2023.

[17] H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler,
D. Falanga, A. Simovic, D. Scaramuzza, S. Li, M. Ozo, C. De Wagter,
et al., “Challenges and implemented technologies used in autonomous
drone racing,” Intelligent Service Robotics, vol. 12, pp. 137–148, 2019.

[18] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for
quadrotor waypoint flight,” Science Robotics, vol. 6, 2021.

[19] Z. Zhou, G. Wang, J. Sun, J. Wang, and J. Chen, “Efficient and robust
time-optimal trajectory planning and control for agile quadrotor flight,”
IEEE Robotics and Automation Letters, 2023.

[20] A. Nash, S. Koenig, and C. Tovey, “Lazy theta*: Any-angle path
planning and path length analysis in 3d,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 24, pp. 147–154, 2010.

[21] J. Ji, N. Pan, C. Xu, and F. Gao, “Elastic tracker: A spatio-temporal
trajectory planner for flexible aerial tracking,” in 2022 International
Conference on Robotics and Automation (ICRA), pp. 47–53, IEEE,
2022.

[22] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European control conference (ECC), pp. 3420–3431,
IEEE, 2019.

[23] A. Thirugnanam, J. Zeng, and K. Sreenath, “Safety-critical control
and planning for obstacle avoidance between polytopes with control
barrier functions,” 2022 International Conference on Robotics and
Automation (ICRA), pp. 286–292, 2021.

[24] J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive
control with discrete-time control barrier function,” 2021 American
Control Conference (ACC), pp. 3882–3889, 2020.

[25] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, pp. 628 – 647, 2015.

[26] W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus,
“Safe nonlinear trajectory generation for parallel autonomy with a
dynamic vehicle model,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 19, pp. 2994–3008, 2018.

[27] C. Toumieh and D. Floreano, “High-speed motion planning for aerial
swarms in unknown and cluttered environments,” IEEE Transactions
on Robotics, vol. 40, pp. 3642–3656, 2024.

[28] X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu,
Y. Cao, C. Xu, et al., “Swarm of micro flying robots in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm5954, 2022.

[29] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, p. 1–36, Mar
2019.
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