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Safety-critical Online Quadrotor Trajectory Planner
for Agile Flights in Unknown Environments

Jiazhe Yuan!, Dongcheng Cao!, Jiahao MeiZ2, Jiming Chen!, Fellow, IEEE, and Shuo Li*

Abstract— Autonomous high-speed flight in unknown, clut-
tered environments is essential for a variety of quadrotor
applications, such as inspection, search, and rescue. In this
study, we propose a novel trajectory planner designed to achieve
efficient, high-speed, collision-free flights in such environments.
The proposed approach begins by generating a safe flight
corridor based on the path found by Lazy Theta*, representing
the safe regions with polytopic sets. These sets are then used to
define discrete-time control barrier function (DCBF), ensuring
the quadrotor stays within safe bounds during flight. By
selecting a single waypoint ahead of the quadrotor on the path
as the next waypoint, the trajectory is optimized by considering
both the total flight time and safety constraints. Extensive
simulations and real-world experiments have confirmed our
method’s feasibility, demonstrating its capability for high-speed
performance and reliable obstacle avoidance. [video*]

I. INTRODUCTION

In the past decade, the application scenarios of quadro-
tors have been substantially broadened owing to the rapid
development of agile trajectory planning methods. Among
these planning methods, those for obstacle avoidance have
increasingly garnered research interest due to their promising
application prospects, including inspection, rescue operations
and aerial videography [1], [2], [3].

Trajectory planning in cluttered environments has always
been a challenging problem [4]. Planning a collision-free
trajectory with limited computational resources imposes un-
avoidable challenges, particularly when it comes to real-time
planning in unknown environments and meeting the demands
of high-speed performance. Planning collision-free trajec-
tories under these constraints requires efficient algorithms
capable of rapid adaptation to unknown surroundings while
ensuring safe and stable flights.

To solve this problem, a common approach is to formulate
the trajectory planning task as an optimization problem.
These methods often use polynomial trajectory representa-
tion and are based on the differential flatness property [5],
which generates the collision-free motions in the flat output
space of quadrotors. In these studies, the obstacle avoidance
task is taken into account by incorporating corresponding
penalty functions or constraints into the optimization prob-
lem. For example, a Euclidean Signed Distance Field (ESDF)

1 Authors are with the College of Control Science and Engineering, Zhe-
jiang University, Hangzhou 310027, China shuo.1li@zju.edu.cn

2Jiahao Mei is with the Department of Automation, Zhejiang University
of Technology, Hangzhou 310023, China.

3This work was supported in part by NSFC under Grants 62203385,
62088101.

4https://www.youtube.com/playlist?list=PLJFducH7Q
ICOhcIX3JFsZwB4IgS4_-sPt

Fig. 1: The real-world experiment of our study.

[6] is often constructed to represent a neighborhood area.
Based on this, the trajectory in [7], [8] is a uniform B-spline
optimized with penalty functions to avoid collisions. Addi-
tionally, generating a safe flight corridor (SFC) is another
common approach to represent the safe flight region [9]. The
safe region is denoted by 3-dimensional polytopic sets. These
polytopic sets are further used to form safety constraints in
the optimization problem.

While online obstacle avoidance capabilities have been
demonstrated in [10] and [11], these approaches exhibit
limited velocities during flight caused by the insufficient
incorporation of time-optimality criteria within their trajec-
tory planning frameworks. Although [12] considers time-
optimality to enhance trajectory performance, it still faces
the fundamental limitations described in [13]: the inherent
smoothness of polynomial representations constrains control
inputs, preventing truly time-optimal trajectories. Another
recent work [14] utilizes the framework of Model Predic-
tive Contouring Control [15], meanwhile incorporating the
Discrete-time Control Barrier Function (DCBF) technique
[16] as safety constraints into the framework. However, its
high-speed performance is based on the assumption that the
obstacle-dense environment is already known.

Although the aforementioned works have achieved notable
progress in high-speed flight capabilities, their performance
remains suboptimal. Methods from autonomous drone rac-
ing research [13], [17] have shown significant potential,
where multi-waypoint flight tasks have been extensively
studied with demonstrated success in time optimal trajectory
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generation. For time-optimality considerations, [18] treats
the total flight time as an optimization variable and the
objective function in the optimization problem. Although
time-optimal flight is achieved, the high computational cost
prohibits online generation of such trajectories. A recent
work [19] seeks to overcome this limitation by fixing the
time when passing through the waypoints and introducing
a warm-up technique to provide a suitable initial solution.
These improvements significantly reduce computation time
while ensuring time optimality. Both studies incorporate the
quadrotor’s dynamic model as constraints during the trajec-
tory planning process, avoiding the limitations inherent to the
smoothness of polynomial trajectories, thereby significantly
improving speed performance. However, they primarily focus
on sequential multi-waypoint flight tasks in open terrains and
neglect the challenge of cluttered environments.

In this work, we address the problem of online high-
speed collision-free trajectory planning in unknown environ-
ments. To solve this problem, we propose an optimization
framework that ensures both quadrotor safety and high-speed
performance, while maintaining low computational cost. In
the front-end processing, first we find an initial collision-
free path using Lazy Theta* method and generate a safe
flight corridor to provide the polytopic sets denoting the
safe flight region, then we design a discrete-time control
barrier function (DCBF) to serve as safety constraints in
the following trajectory planning process. Furthermore, to
overcome the increased computational time and performance
limitations caused by using multiple waypoints along the
collision-free path, we select one single waypoint ahead
of the quadrotor on the path as the next waypoint. In the
following trajectory planning process, we treat time as both
an optimization variable and part of the objective function,
while utilizing discrete-time control barrier function (DCBF)
constraints to guarantee safety in cluttered environments.

The pipeline of this work is shown in Fig. 2, and the
contributions of this work are listed as follows:

1) We propose a novel quadrotor trajectory planner that
achieves online trajectory planning for high-speed obstacle
avoidance flight tasks.

2) Our planning method achieves high-speed obstacle
avoidance by leveraging full quadrotor dynamics, using
DCBF constraints to maintain dynamic feasibility while
ensuring safe navigation through cluttered environments.

3) We validate the effectiveness and robustness of our
proposed method through extensive experiments both in
simulation and real-world scenarios, demonstrating its su-
periority in achieving both high-speed and reliable obstacle
avoidance.

II. FRONT-END PROCESSING

In this section, we first compute an initial collision-free
path (Step 1 in Fig. 3) using Lazy Theta*[20], followed
by the construction of a safe flight corridor (Step 2 in Fig.
3) based on the computed path. Subsequently, we design
a discrete-time control barrier function (DCBF) (Step 3 in
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Fig. 2: The framework diagram of our study.

Fig. 3) to ensure precise obstacle avoidance by leveraging
the polytopic sets derived from the safe flight corridor.

A. Path Searching and Safe Flight Corridor Generation

To generate efficient collision-free initial paths, we employ
the Lazy Theta* algorithm [20]. This approach improves
upon traditional A* by eliminating unnecessary waypoints
through line-of-sight checks, resulting in shorter paths while
maintaining comparable computational efficiency.

We construct a safe flight corridor around the waypoints
generated by the Lazy Theta* algorithm [21]. This corridor
consists of convex polytopic sets that explicitly define the
safe flight region. These convex sets are crucial to our
method, as they enable the generation of a precise obstacle
avoidance trajectory, which will be further elaborated in
Section IIl. The safe flight corridor, denoted as C, is the
union of Np convex polytopic sets C;, defined as follows:

Np
c=U¢a,
=1

ey

where A ; € R? represents the normal vector of the j th facet,
b; € R denotes the offset of the j th facet, and N i indicates
the number of facets in the i*" polytopic set.

B. Obstacle Avoidance with DCBF

Since the polytopic sets from the safe flight corridor
alone do not ensure obstacle avoidance, we introduce the
discrete-time control barrier function (DCBF) to regulate
the quadrotor’s trajectory. The discrete-time control barrier
function (DCBF) is a mathematical tool [22] used to ensure
the safety of discrete-time dynamic systems by defining a
safe set for quadrotor states. By establishing a safe region
in the state space, it enforces state constraints, guiding the
quadrotor’s trajectories to remain within the safe set.

The discrete-time control barrier function (DCBF) h :
X — R, where X C R" denotes the state space, is
designed to keep the quadrotor within a predefined safe set
by regulating its movement over time. The safe set S, which
defines the safe range of quadrotor states within the state
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Fig. 3: Methodology Overview. The process begins with Step 1, where an initial collision-free path is computed. In Step 2, a safe flight
corridor (SFC) is generated. Step 3 involves the formulation of discrete-time control barrier function (DCBF) constraints based on the
SFC. Finally, in Step 4, after selecting a specific waypoint from the computed path, the trajectory is optimized to achieve high-speed
motion while adhering to the DCBF safety constraints to ensure obstacle avoidance.

space under safety constraints, is defined as the 0-superlevel
set of the discrete-time control barrier function (DCBF):

S:={x e X :h(x) >0}, ()

where x represents quadrotor states and x € X C R™. This
formulation ensures that as long as h(x) > 0, the quadrotor
states remain within the safe region S.

With the convex polytopic sets provided by safe flight
corridor in Section II-A, we specifically design the discrete-
time control barrier function (DCBF) using the Euclidean
distance between the quadrotor and each facet of the current
polytopic set differing from a safe distance constant dg,fe.
When the quadrotor reaches the i*" convex polytopic set C,
the corresponding DCBF is designed as follows:

ATx, — b,
M_dsafea

[1A;]] 3)
j=1,2,..., Ny,

hi (X) =

where x,, C R? denotes the current position of the quadrotor,
and dgr. denotes the necessary safe distance between the
quadrotor and the boundary of the safe flight corridor.

Given the definition of the DCBF which ensures that the
quadrotor states remain within the safe set S, it becomes
necessary to impose additional constraints to regulate how
quickly the system approaches the boundary of this set.
Similar to [23], we impose a decay condition on h(x),
ensuring that the function value decreases at a controlled rate
as the quadrotor states evolve over time. This decay condition
not only maintains safety by preventing the system from
exiting the safe set too quickly, but also provides flexibility in
system control by balancing safety with trajectory feasibility.
Following this principle, the exponential decay condition can
be expressed as follows:

h(xkt1) > vk - h(xk), 0 <k <1, “4)

where the DCBF decreases between successive time steps
at a decay rate j. Therefore, given a valid DCBF h(x),

imposing constraint (4) in an optimization problem ensures
system safety by generating collision-free trajectories. How-
ever, a fixed decay rate 7, leads to a tradeoff between
system safety and feasibility of a collision-free trajectory.
Reducing the decay rate enlarges the feasible domain under
the constraint (4) but meanwhile results in a quick approach
to the boundary of the safe set, denoted by 95 := {z € X :
h(z) = 0}. This rapid approach can make the trajectory
unsafe. Conversely, increasing the decay rate prioritizes
safety but reduces feasibility [24]. To address this challenge,
we introduce a slack variable 7, into DCBF constraints as
follows:

h(Xkt1) = Ve - h(xx), 0 <y <1, )

where the relaxing variable 7 is optimized with other
variables inside an optimization problem, which resolves the
tradeoff between system safety and collision-free trajectory
feasibility.

ITII. TRAJECTORY OPTIMIZATION

In this section, building upon the path and DCBF con-
straints introduced in Section II, we present the detailed
process of trajectory planning. A waypoint on the path
located at a specific distance ahead of the quadrotor is
selected as the next required waypoint. The trajectory is then
generated with a focus on both high-speed motion and DCBF
safety constraints (Step 4 in Fig. 3). This results in a real-
time planning framework that dynamically selects waypoints
while optimizing for high-speed and collision-free flight.

A. Quadrotor Dynamics

We utilize the same quadrotor dynamical model as pre-
sented in [18]. The dynamics of the quadrotor are given by:

p v
x= |v| ={g+R(q)zpT (6)
a @ o7



where T = [0,0, T]7 represents the mass-normalized thrust
vector, R(q) denotes the rotation matrix, zp is the unit
vector along the body z-axis and A(q) is the quaternion
kinematics matrix. The variables p, v, q and w represent
the position, inertial velocity, attitude quaternion, and body
rate, respectively. To achieve smoother thrust transitions, we
define the control input as u = [AT,w?]T, where AT
represents the thrust rate with T = AT, and w are the body
angular rates.

The discrete-time formulation of (6) is also derived, which
is used in the following optimization process.

X1 = f(Xg, ug, dty) @)

B. Optimization Formulation with Safety Constraints

1) Trajectory Planning: The trajectory generation method
proposed in this work accounts for both obstacle avoidance
and the minimization of the total flight time. Specifically,
time is treated as an optimization variable and integrated
into the objective function to ensure a high-speed trajectory.
Additionally, the previously introduced DCBF constraints (5)
are imposed in the optimization process, thereby guarantee-
ing collision-free trajectories throughout the flight.

Generating trajectories based on multiple waypoints in
Section II-A leads to a more heavy computational burden.
Therefore, in this study, to generate optimal trajectories
online, we select the waypoint which is located 2m ahead
of the quadrotor, as the next waypoint p,, (the red point
in Fig. 3) and discard all the waypoints between the current
position of the quadrotor and p,,. Similar to [19], to generate
the optimal trajectory, we fix the number of the intermediate
nodes V4. (the black points in Fig. 3). In other words, the
trajectory to be generated is discretized into Ny, segments,
each with a sampling interval d¢ > 0. Consequently, the total
flight time can be obtained as follows and our optimization
target is to minimize this flight time P;:

P, = N, - dt. (8)

In addition, penalties on 7 (the slack variable for DCBF
constraints) and uj (the control input) are incorporated
into the objective function, which prevents the solver from
selecting these variables arbitrarily. The introduction of these
additional penalties has been demonstrated as crucial for
maintaining stability in nonlinear optimization formulations
[25], [26]. Without them, the generated solutions often ex-
hibit excessive noise, rendering the control inputs impractical
for real-world flight scenarios. To ensure obstacle perception
during flight, we compute the yaw angle difference A as
At) = Ydesired — VN,,, Where the desired yaw angle gesired
is derived from the direction vector pointing to the next
waypoint. Inspired by [27], to ensure quadrotor safety, we
set the desired velocity vgesire according to the complexity
of the environment. A penalty function:

Ny

P, = Z max (0, [|[Vi|| — vdesire) ©
k=1

is introduced to constrain velocities from exceeding the
sampling threshold.

Finally, the proposed collision-free optimization problem,
incorporating both the DCBF constraints (5) and dynamic
constraints (7), can be formulated as follows:

min
Xk, Uk, dt,ng

P+ Py + [Imlly, + llwrlld,

+ATS., + 12%15,,
st [[pn— pw”% < 612
Xip < Xk < Xuby X0 = Xinit
Ty <Tp <Twp
wp < ugp < Uy
the constraints in(5)(7)

(10)

where n = 1,2, ..., Ny, denotes the number of the current
time step.

2) Online Replanning with Warm-up Technique: Due to the
presence of nonlinear dynamic constraints, solving Problem
(10) without a suitable initial solution leads to either an
infeasible solution which violates the given constraints or
an optimal but computationally expensive solution. Similar
to [19], we formulate a preliminary optimization problem to
serve as a warm-up technique prior to solving Problem (10),
providing an initial solution. This ensures both the quality of
the final solution and a manageable computation time when
using the interior-point method.

In the preliminary optimization problem, first we relax
the waypoint, dynamics, and DCBF constraints by integrat-
ing them into the objective function using penalty terms.
Specifically, we define the penalty functions as follows:
P, = ||pN,. — Pwl|? for the waypoint constraint, P; =
ZkNZO I Xk+1— f(Xx, ug, dto)||3 for the dynamics constraint,
where dt is pre-assigned. We design an adaptive strategy
to assign dtg a corresponding value based on time-optimal
trajectories for a point mass. The minimum time required
to reach the next waypoint is determined by solving the
time-optimal trajectory for a point mass, applying maximum
acceleration a,,,,, from the current position p. and velocity
v., where the equation v t,,;, + %amamtfmn = Pe — Pw
holds. Once the minimum time ¢,,;, is obtained, dty is
calculated by dtg = timin/Ner.

Additionally, penalties on 7, and u are retained in the
objective function to ensure the stability of the preliminary
optimization problem. The final formulation of the prelimi-
nary optimization problem is formulated as follows:

min
Xk Uk Nk

Py + Pa+ |, + llwrld,

2
T IAT G sr
st X < X < Xuby X0 = Xinit (In
up < U < Uy
Ty < Tk < Tup
By appropriately selecting dt, and utilizing the interior point
method, the solution to the preliminary optimization Problem



TABLE I: Comparison between with EGO-Planner-v2[28] and our method. The comparison is conducted in two environments with
different obstacle densities. The metrics displayed in the table are flight time, average velocity, peak velocity, and flight distance, all

presented in the format of mean + standard deviation, as well as the success rate.

Density Method Flight Time (s) Velocity (m/s, Mean * Std. Dev.) Flight Distance (m) Success Rate
(obs/m?) (Mean * Std. Dev.) Avg. Vel. Peak Vel. (Mean * Std. Dev.) (%)
0.15 EGO-Planner-v2(vpqz = 10) 14.011 + 2.404 3.883 £ 0.608 9.440 £+ 0.313 53.001 £ 0.926 100
’ Our Method (vimaz = 10) 7.972 4+ 0.093 6.302 £+ 0.074 9.991 £ 0.141 50.293 + 0.096 100
EGO-Planner-v2 (vmqz = 8) 17.625 + 1.576 3.146 + 0.287 7.972 + 0.260 54.175 4+ 1.099 90
0.3 EGO-Planner-v2(vyaz = 10) 14.333 £+ 2.357 3.886 + 0.414 9.572 £+ 0.438 55.467 £+ 3.294 60
Our Method (vmaz = 10) 8.692 £ 0.190 5.825 £ 0.126 9.080 £ 0.027 50.658 £+ 0.078 100
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(a) Sparse obstacle environments with a density of 0.15 obs/m?

(b) Dense obstacle environments with a density of 0.30 obs/m?

Fig. 4: Simulation results: Trajectory and Velocity Performance in Sparse and Dense Obstacle Environments. We present 2 representative
trajectories from 10 repeated experiments, which exhibit slight variations but consistently demonstrate similar overall speed and time
performance, shown in Table I. This consistency highlights the stability of our method in performing real-time trajectory planning tasks.

(11) can be obtained, which serves as the initialization for
Problem (10).

Furthermore, to facilitate online collision-free trajectory
generation, both Problem (10) and Problem (11) are solved
in a receding horizon fashion. Specifically, the quadrotor
computes trajectories within a limited horizon and continu-
ously updates them at a high frequency, ensuring both system
safety and low computation time.

IV. SIMULATION EXPERIMENT

In this section, we conduct a series of simulation ex-
periments to evaluate the advantages of our method in
comparison with existing approaches. The simulations are
implemented in C++ using the ROS communication frame-
work. The initial collision-free path searching, detailed in
Section II-A, is conducted in simulation with a frequency
of 50Hz. As detailed in Section III, during each iteration of
trajectory generation, the number of intermediate nodes is
set to Ny, = 10. The optimization problem (10) is solved
using CASADI [29] as the code generation tool and IPOPT
[30] as the solver. The solving time is about 20 ms on a
laptop with an Intel I17-11800H CPU with a base frequency
of 2.5GHz and RAM of 32G.

As an online trajectory generation method, MINCO [12]
has shown excellent performance in obstacle avoidance,
ensuring trajectory safety in both sparse and dense envi-
ronments. Therefore, we selected the MINCO-based on-
line obstacle avoidance planner, EGO-Planner-v2[28], as the
baseline for our comparative experiments. We evaluate the
performance of our method against the EGO-Planner-v2 with
single drone deployment, by comparing key metrics such as
success rate, average velocity, maximum velocity, and flight
time. The comparison is conducted in two environments
with different obstacle densities. One environment features
a sparse distribution of cylindrical obstacles with a density
of 0.15 0bs/rn2, while the other features a denser distribu-
tion with a density of 0.3 obs/m®. In both scenarios, the
flight tests take place within a confined space measuring
40m x 15m x 5m. The minimum distance between any
two obstacles is maintained at 1m. The dynamical limits
for EGO-Planner-v2 are set to maximum acceleration and
maximum jerk, which correspond to the same maximum
thrust and thrust change rate in our method. To compare the
stability performance of our method against EGO-Planner-
v2, the simulation experiments under each configuration are
repeated 10 times, and all reported results represent the



Fig. 5: The snapshot of our quadrotor.

average of these repeated trials.

As shown in Table I and Fig. 4 , our method consis-
tently outperforms EGO-Planner-v2 in both sparse and dense
environments across various metrics, including flight time,
velocity, and success rate. In the sparse environment with a
density of 0.15 obs/m2, EGO-Planner-v2 achieves a 100%
success rate, but its average velocity is limited to 3.88 m/s,
resulting in a longer flight time of 14.01 s. In contrast, our
method, maintains a 100% success rate while significantly
increasing the average velocity to 6.30 m/s, reducing the
flight time to 7.97 s.

In the dense environment with a density of 0.3 obs/m?,
EGO-Planner-v2 shows a notable decline in performance.
When its maximum velocity is limited to vyx = 10 m/s,
its success rate drops dramatically to 60%, with an average
velocity of 3.89 m/s and a longer flight time of 14.33 s due
to trajectory tracking errors increasing during sharp turns.
Even with a reduced limitation vy,x = 8 m/s, EGO-Planner-
v2 only achieves a success rate of 90%, while its average
velocity remains lower at 3.15 m/s, leading to an increased
flight time of 17.63 s. On the other hand, our method,
illustrated in Fig. 4(b), consistently maintains a 100% success
rate in both configurations, with an average velocity of
5.83 m/s in the dense environment and a significantly shorter
flight time of 8.69 s. Moreover, our method demonstrates
more efficient trajectories, covering shorter distances than the
EGO-Planner-v2, which traverses more ground due to less
optimal path planning. In both environments, our method
achieves superior stability, as evidenced by consistently
higher success rates, faster velocities, and shorter flight times,
outperforming EGO-Planner-v2 across all metrics.

V. REAL-WORLD EXPERIMENT

Our experimental setup features a custom-developed
quadrotor equipped with an Intel RealSense D435 depth cam-
era for real-time mapping and a Jetson Orin NX for onboard
processing, as shown in Fig. 5. The quadrotor weighs 338 g
and features a thrust-to-weight ratio of 3.5, providing stable
flight performance. For precise state estimation, we utilize
a motion capture system that tracks the quadrotor’s position
and velocity. All experiments are conducted within a 5 m
x 5 m x 2.5 m free-flight space, as shown in Fig. 1. The
key parameters for trajectory generation, including waypoint
selection and intermediate point configuration, are set iden-
tical to those used in the simulation experiments described
in Section IV.

TABLE II: Flight Results of Experiments

V_max Limit (m/s) Time (s) Max Speed (m/s) Avg Speed (m/s)

4 2.97 4.04 3.0
6 2.80 5.95 35

—e— Trajectory

%0 U
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Fig. 6: Trajectory results and rviz visualization in the real-world
experiments with the maximum velocity limit of 6 m/s.

In real-world experiments, the quadrotor departs from a
designated hover point, autonomously generates a collision-
free high-speed trajectory, and completes the flight by reach-
ing the designated endpoint, where it hovers again. Each
trajectory’s flight time is determined by the time interval
between the two hover points. Specifically, the starting and
ending points are set as [-2.5, 1, 0.7] m and [2.2, -3.5, 0.7] m,
respectively. To further evaluate the stability of our method,
we conduct a series of experiments under different maximum
velocity limits set to 4 m/s and 6 m/s respectively, aiming to
assess its performance across various velocity scenarios.

Fig. 6 and Table II illustrate the quadrotor’s trajectory
results under these varying maximum velocity limits. The
data shows that increasing the velocity limit leads to a shorter
flight time and higher overall speeds. The drone’s ability
to nearly reach the specified velocity limits in both cases
suggests effective control and robust performance in high-
speed scenarios. This experiment demonstrates the feasibility
of the proposed method in the real world and also its
adaptability to different speed constraints.

VI. CONCLUSION

This paper presents a novel trajectory planning frame-
work tailored for high-speed, obstacle-avoidance flights in
unknown environments. By utilizing Lazy Theta* to generate
a safe flight corridor and incorporating discrete-time control
barrier functions (DCBFs) for safety constraints. Our method
ensures collision-free navigation while maintaining real-time
performance. Through comprehensive simulations and real-
world experiments, our method consistently demonstrates
superior performance compared to existing approaches.

Future work will focus on conducting physical experi-
ments in environments with higher obstacle densities and
conducting comprehensive field trials in natural settings.
Additionally, we plan to adapt the method for multi-agent
trajectory planning to enable efficient coordination in clut-
tered airspace. These efforts aim to enhance quadrotors’
capabilities in more complex real-world environments.



(1]

(2]

(3]

(4]

[5]

(6]

(8]

[91

[10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

[19]

[20]

(21]

REFERENCES

D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” nature, vol. 521, no. 7553, pp. 460—466,
2015.

G. Loianno and D. Scaramuzza, “Special issue on future challenges
and opportunities in vision-based drone navigation.,” Journal of Field
Robotics, vol. 37, no. 4, 2020.

X. Guo, Y. He, L. Shangguan, Y. Chen, C. Gu, Y. Shu, K. Jamieson,
and J. Chen, “ Mighty: Towards Long-Range and High-Throughput
Backscatter for Drones ,” IEEE Transactions on Mobile Computing,
vol. 24, pp. 1833-1845, Mar. 2025.

G. Chen, D. Sun, W. Dong, X. Sheng, X. Zhu, and H. Ding,
“Computationally efficient trajectory planning for high speed obstacle
avoidance of a quadrotor with active sensing,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 3365-3372, 2021.

D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference
on robotics and automation, pp. 2520-2525, 1IEEE, 2011.

P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of
sampled functions,” Theory of computing, vol. 8, no. 1, pp. 415-428,
2012.

B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transac-
tions on Robotics, vol. 37, no. 6, pp. 1992-2009, 2021.

W. Ding, W. Gao, K. Wang, and S. Shen, “An efficient b-spline-based
kinodynamic replanning framework for quadrotors,” IEEE Transac-
tions on Robotics, vol. 35, no. 6, pp. 1287-1306, 2019.

S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1688-1695,
2017.

X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 478-485, 2020.

B. Zhou, F. Gao, J. Pan, and S. Shen, “Robust real-time uav replanning
using guided gradient-based optimization and topological paths,” in
2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1208-1214, IEEE, 2020.

Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained tra-
jectory optimization for multicopters,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 3259-3278, 2022.

D. Hanover, A. Loquercio, L. Bauersfeld, A. Romero, R. Penicka,
Y. Song, G. Cioffi, E. Kaufmann, and D. Scaramuzza, “Autonomous
drone racing: A survey,” IEEE Transactions on Robotics, 2024.

J. Qiu, Q. Liu, J. Qin, D. Cheng, Y. Tian, and Q. Ma, “Pe-planner:
A performance-enhanced quadrotor motion planner for autonomous
flight in complex and dynamic environments,” IEEE Robotics and
Automation Letters, 2024.

A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive
contouring control for time-optimal quadrotor flight,” IEEE Transac-
tions on Robotics, vol. 38, no. 6, pp. 3340-3356, 2022.

Z. Jian, Z. Yan, X. Lei, Z. Lu, B. Lan, X. Wang, and B. Liang,
“Dynamic control barrier function-based model predictive control to
safety-critical obstacle-avoidance of mobile robot,” in 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 3679—
3685, IEEE, 2023.

H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler,
D. Falanga, A. Simovic, D. Scaramuzza, S. Li, M. Ozo, C. De Wagter,
et al., “Challenges and implemented technologies used in autonomous
drone racing,” Intelligent Service Robotics, vol. 12, pp. 137-148, 2019.
P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for
quadrotor waypoint flight,” Science Robotics, vol. 6, 2021.

Z. Zhou, G. Wang, J. Sun, J. Wang, and J. Chen, “Efficient and robust
time-optimal trajectory planning and control for agile quadrotor flight,”
IEEE Robotics and Automation Letters, 2023.

A. Nash, S. Koenig, and C. Tovey, “Lazy theta*: Any-angle path
planning and path length analysis in 3d,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 24, pp. 147-154, 2010.

J. Ji, N. Pan, C. Xu, and F. Gao, “Elastic tracker: A spatio-temporal
trajectory planner for flexible aerial tracking,” in 2022 International
Conference on Robotics and Automation (ICRA), pp. 47-53, 1IEEE,
2022.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European control conference (ECC), pp. 3420-3431,
IEEE, 2019.

A. Thirugnanam, J. Zeng, and K. Sreenath, “Safety-critical control
and planning for obstacle avoidance between polytopes with control
barrier functions,” 2022 International Conference on Robotics and
Automation (ICRA), pp. 286-292, 2021.

J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive
control with discrete-time control barrier function,” 2021 American
Control Conference (ACC), pp. 3882-3889, 2020.

A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, pp. 628 — 647, 2015.

W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus,
“Safe nonlinear trajectory generation for parallel autonomy with a
dynamic vehicle model,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 19, pp. 2994-3008, 2018.

C. Toumieh and D. Floreano, “High-speed motion planning for aerial
swarms in unknown and cluttered environments,” IEEE Transactions
on Robotics, vol. 40, pp. 3642-3656, 2024.

X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu,
Y. Cao, C. Xu, et al., “Swarm of micro flying robots in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm5954, 2022.

J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, p. 1-36, Mar
2019.

A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, pp. 25-57, 2006.



	Introduction
	Front-end Processing
	Path Searching and Safe Flight Corridor Generation
	Obstacle Avoidance with DCBF

	Trajectory Optimization
	Quadrotor Dynamics
	Optimization Formulation with Safety Constraints

	Simulation Experiment
	Real-World Experiment
	Conclusion
	References



