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一、个人申报
（一）基本情况【围绕《浙江工程师学院（浙江大学工程师学院）工程类专业学位研究生工

程师职称评审参考指标》，结合该专业类别(领域)工程师职称评审相关标准，举例说明】

1.对本专业基础理论知识和专业技术知识掌握情况

本人对专业基础理论知识掌握扎实，在日常学习中，严谨自律，勤奋好学，专业成绩突出，

于研一学年高质量地完成了所有课程，平均绩点92.36，位列班级前茅。在13门课程中，其

中5门课程成绩在95分以上，10门课程成绩在90分以上。

2.工程实践的经历

本人在浙江数服智联科技有限公司进行专业实践，主要工作内容是利用大规模复杂图优化嵌

入表示以提升下游任务性能，研究内容涉及图表示学习、图神经网络、对比学习。技术难点

是用更轻量的图构造方法和更高效的聚合方法来提升图学习性能。

3.在实际工作中综合运用所学知识解决复杂工程问题的案例

本人系统地掌握了图嵌入学习和图对比学习的领域知识。图嵌入(Graph 

Embedding)是一种将图结构中的节点或边转化为低维向量表示的技术。近年来，随着深度学

习和图神经网络的兴起，图嵌入得到了广泛的研究和应用。早期的图嵌入方法主要基于特征

工程和矩阵分解等传统机器学习技术。这些方法使用节点的局部邻域信息或全局网络结构信

息来构建节点之间的相似性或关联性，并通过降维算法将节点映射到低维空间。然而，这些

方法在处理大规模复杂图时存在着效率和可扩展性的问题。为了克服这些限制，基于深度学

习的图嵌入方法应运而生。这些方法利用神经网络模型，通过学习节点之间的局部结构和全

局特征，将图中的节点映射到低维向量空间。深度学习方法的优势在于能够自动地从数据中

学习到更丰富、更有表达力的特征表示，并且能够适应不同类型的图结构。随着研究的深入

，出现了众多的图嵌入方法。其中，基于图卷积网络(Graph Convolutional 

Network，GCN)的方法成为了研究的热点。GCN通过在图上进行卷积操作，利用节点的邻居信

息来更新节点的表示，从而捕捉节点之间的关系和上下文信息。此外，还有基于自编码器(A

utoencoder)、生成对抗网络(Generative Adversarial Network，GAN)和变分自编码器 

(Variational 
Autoencoder，VAE)等方法，它们通过重构图结构或生成虚拟图来学习图的嵌入表示。图对

比学习(Graph Contrastive 

Learning)是一种用于学习图表示技术，旨在通过对比不同图之间的相似性和差异性来训练

图嵌入模型。它在最近几年内得到了广泛的关注和研究。图对比学习的发展可以追溯到传统

的对比学习方法，如孪生网络和三元组损失。这些方法主要应用于图像和文本领域，通过比

较不同样本之间的相似性来学习特征表示。然而，将对比学习方法推广到图结构数据上面临

着更大的挑战，因为图数据的结构和属性更加复杂。随着图神经网络的发展，基于深度学习

的图对比学习方法逐渐兴起。这些方法通常采用自监督学习的思想，通过设计合适的对比任

务和损失函数，来学习图数据的判别性特征表示。其中，最常见的方法是构建图对比任务，

如正负样本对比、同质性对比和异质性对比等。本次实践给我提供了实际应用和操作的机会

，能够将学到的理论知识转化为实际技能。通过实践，我可以更深入地理解和掌握所学知识

，并在实际中培养出更高水平的专业能力。

本次专业实践活动与学位论文选题紧密衔接，旨在通过对图嵌入的深入研究来为技术应用的

创新提供基础和支持。在这次实践活动中，我进行了广泛而深入的研究，并进行了实验验证

，以探索图嵌入领域的新理论模型、算法和方法，并将其应用于解决实际问题。首先，我进

行了对现有图嵌入方法的系统调研和分析，了解了当前该领域的研究热点和技术趋势。在此

基础上，我提出了一种新的理论模型或算法，针对特定的实际问题进行了深入的研究。通过

大量的实验和数据分析，我验证了新方法的有效性和性能优势。这些研究和实验的结果为技

术应用的创新提供了基础，为进一步的发展奠定了坚实的基础。在本次实践活动中，我还发
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现了新的技术趋势和潜力。通过与导师和同行的交流与讨论，我了解到了一些前沿的研究方

向和新兴的应用领域。这些发现对于推动技术应用的创新和发展非常重要，它们可以激发新

的创意和思路，引领未来的研究和实践方向。此外，本次实践活动还促使我深入思考技术应

用的实际问题，并积极探索解决方案。通过将理论模型、算法和方法应用于实际问题的解决

，我获得了宝贵的经验和见解。这种将理论与实践相结合的方法，为技术应用提供了更有效

的解决方案，并为实际应用的可行性和效果提供了支持。本次实践活动以实际的应用场景为

导向，我深入地了解了问题的本质，并提出了创新的解决方案。将理论知识与实际问题相结

合，我为技术应用提供了更为有效的解决方案。这种将理论与实践相结合的方法，为技术应

用的创新提供了坚实的基础。在本次科研实践中，我产出了丰富的技术成果，这些成果为技

术应用的创新和成果转化提供了基础。通过大量的实验、数据分析和验证，我生成了新的技

术方法、模型或产品，并在实践中对其进行了迭代和优化。这些技术成果将为进一步的开发

和推广奠定基础，促进技术应用的实际落地和商业化。在实践活动中，我也深刻认识到了技

术在实际环境中的表现和局限性。通过实际应用场景的反馈，我能够识别出技术的优势和不

足之处。这些反馈信息对我进行技术改进和优化起到了重要的指导作用，帮助提高技术应用

的效果和适应性。
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（二）取得的业绩（代表作）【限填3项，须提交证明原件（包括发表的论文、出版的著作、专利

证书、获奖证书、科技项目立项文件或合同、企业证明等）供核实，并提供复印件一份】

1. 
公开成果代表作【论文发表、专利成果、软件著作权、标准规范与行业工法制定、著作编写、科技

成果获奖、学位论文等】

成果名称

成果类别 

[含论文、授权专利（含

发明专利申请）、软件著

作权、标准、工法、著作

、获奖、学位论文等]

发表时间/

授权或申

请时间等

刊物名称

/专利授权

或申请号等

本人

排名/

总人

数

备注

Representation 

Enhancement based 

Cold Start Model for 

Elastic Compute 

Service 

Recommendation 

会议论文
2023年07

月02日

2023 IEEE 

Internatio

nal 

Conference 

on Web 

Services 

(ICWS) 

1/7 已发表

Graph Relation 

Embedding Network for 

Click-through Rate 

Prediction 

核心期刊
2022年08

月01日

Knowledge 

and 

Informatio

n Systems

1/6 已发表

      

2.其他代表作【主持或参与的课题研究项目、科技成果应用转化推广、企业技术难题解决方案、自

主研发设计的产品或样机、技术报告、设计图纸、软课题研究报告、可行性研究报告、规划设计方

案、施工或调试报告、工程实验、技术培训教材、推动行业发展中发挥的作用及取得的经济社会效

益等】

 



6

（三）在校期间课程、专业实践训练及学位论文相关情况

课程成绩情况 按课程学分核算的平均成绩： 90  分

专业实践训练时间及考

核情况(具有三年及以上

工作经历的不作要求)

累计时间： 1 年（要求1年及以上）

考核成绩： 91 分（要求80分及以上）

本人承诺

个人声明：本人上述所填资料均为真实有效，如有虚假，愿承担一切责任

，特此声明！

申报人签名：
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Graph Relation Embedding Network for
Click-through Rate Prediction

Yixuan Wu1, Youpeng Hu2, Xin Xiong3, Xunkai Li2, Ronghui Guo2 and Shuiguang Deng1
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Abstract. Most deep click-through rate (CTR) prediction models utilize a mainstream
framework, which consists of the embedding layer and the feature interaction layer. Em-
beddings rich in semantic information directly benefit the downstream frameworks to
mine potential information and achieve better performance. However, the embedding
layer is rarely optimized in the CTR field. Although mapped into a low-dimensional
embedding space, discrete features are still sparse. To solve this problem, we build
graph structures to mine the similar interest of users and the co-occurrence relation-
ship of items from click behavior sequences, and regard them as prior information for
embedding optimization. For interpretable graph structures, we further propose Graph
Relation Embedding Networks (GREENs), which utilize adapted order-wise graph con-
volution to alleviate the problems of data sparsity and over-smoothing. Moreover, we
also propose a Graph Contrastive Regularization (GCR) module, which further normal-
izes graph embedding by maintaining certain graph structure information. Extensive
experiments have proved that by introducing our embedding optimization methods,
significant performance improvement is achieved.

Keywords: Click-through Rate; Graph Embedding; Recommender System; Graph
Neural Network

1. Introduction

Whether in online advertising, search engines, or recommender systems (Yi et al.
2019), human computer interaction (Liu et al. 2021), movies (Li et al. 2022),
robot service (Liu et al. 2018), and intelligent control (Liu et al. 2019), click-
through rate (CTR) prediction tasks are of great research and commercial value,
whose result can rank the items returned to a user to maximize the number of
clicks.
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Deep learning methods have stronger expressive ability and more flexible
structures, which can better handle classification tasks. Instead of traditional
methods, a series of representative deep CTR models have been developed by
introducing neural networks, such as Wide&Deep (Cheng et al. 2016) and PNN
(Qu et al. 2016), etc. In recent years, researchers have made various meaningful
attempts. DeepFM (Guo et al. 2017) is an end-to-end model with stronger gen-
eralization ability and memory ability, which extracts both low- and high-order
feature interactions by introducing factorization machine (FM). DIN (Zhou et al.
2017) and DIEN (Zhou et al. 2019), which achieve considerable performance im-
provements, utilize users’ historical click behaviors to mine the distribution and
transfer of users’ interest respectively as the prior information to provide an es-
timate of current interest. It can be seen that the inherent prior information of
features can effectively improve prediction accuracy.

The above deep CTR models are mainly composed of an input layer, an
embedding layer, a feature interaction layer and an output layer, which can be
regarded as a joint optimization of representation learning and task-oriented
learning. The embedding layer is responsible for densifying the discrete features
as their corresponding representations and then passing them to the downstream
modules for feature interaction. In practice, densification requires a large number
of data to support, while a user’s click behaviors or a item’s clicked behaviors
are too sparse compared to numerous items and users, which brings challenges
to learn representations with rich semantic information.

Graph embedding has achieved an excellent effect in the field of embed-
ding representation (Kipf and Welling 2016b) (Cui et al. 2020) (Li et al. 2021)
(Zhang et al. 2020). By constructing interpretable graph structures, graph learn-
ing methods can be applied to the CTR prediction for a more reasonable feature
space, as shown in figure 1. Based on click behavior sequences, Graph Intention
Network(GIN) (Li et al. 2019) constructs the co-occurrence graph of items and
aggregates neighbor nodes by attention mechanism to solve the problems of over-
sparse and weak generalization. However, GIN leaves a lot to be desired, such as
underutilized relationship information and slow convergence speed.

In addition, the CTR model is prone to overfitting due to a huge amount
of parameters for feature extraction and interaction, resulting in its poor gener-
alization ability. To solve it, there is a mainstream solution to introduce regu-
larization terms to enhance generalization ability. Inspired by graph contrastive
learning methods such as Deep Graph Infomax (DGI) (Veličković et al. 2018),
we can maintain certain graph structure information in a self-supervised way to
prevent the overfitting phenomenon. With fewer parameters and no additional
labels required, it is considered as an efficient regularization strategy of the graph
embedding layer.

Based on previous works and the pain points of CTR prediction, we propose
our novel embedding optimization method, namely, Graph Relation Embedding
Network (GREEN), on the item co-occurrence graph and the user co-interest
graph constructed through click behavior sequences, as shown in figure 3. An
adapted order-wise graph convolution is designed in GREEN to aggregate infor-
mation and provide rich prior information for a more reasonable feature space.
Moreover, we propose a Graph Contrastive Regularization (GCR) method to
suppress the overfitting phenomenon. It is emphasized that our method is appli-
cable to any deep CTR models for embedding optimization.

In summary, the main contributions of this paper are as follows:
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…

…

Graph embedding layer

… … …… Input layer
Field 1 Field 2 Field 𝑚

…

Feature interaction layer

Output layer

Fig. 1. The deep CTR prediction architecture with the graph embedding layers

• We mine potential relations based on click behaviors and propose a reasonable
and interpretable construction strategy of the item co-occurrence graph and
the user co-interest graph.

• We propose the Graph Relation Embedding Network. Through the relations
among multi-hop neighbors, it can effectively alleviate the data sparsity and
learn better representation.

• As a novel regularization method, Graph Contrastive Regularization is pro-
posed to relieve the problem of overfitting.

• Our method is implemented on the public datasets and achieved a considerable
performance improvement compared to the baseline.

2. PRELIMINARIES

The datasets for CTR prediction consist of n samples, each of which is repre-
sented as (x, y), where y ∈ {0, 1} represents whether the user clicks the target
item in the specific context, x = [xfield1 ,xfield2 , ...,xfieldm ], and xfieldi is to
describe the feature of user, item, context or others.

Since discrete features are often encoded to sparse one-hot vectors, they are
densified through an embedding layer in deep CTR models:

(e1, e2, ..., em) = f(xfield1
,xfield2

, ...,xfieldm
), (1)

where f(·) represents the embedding function which follows the table lookup
mechanism, and e represents the corresponding embeddings. Further, the CTR
prediction result is obtained through a feature interaction layer and an output
layer:

ŷ = σ(g(e1, e2, ..., em)), (2)

where g(·) represents the feature interaction function, such as multilayer per-
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ceptrons, ŷ is the prediction result of the current data x, and σ(t) = 1
1+e−t . In

the training process, the binary cross entropy function is utilized to calculate
prediction loss:

LBCE = − 1

n

n∑
j

[yj log ŷj + (1− yj) log (1− ŷj)]. (3)

Finally, the end-to-end joint optimization process is carried out by the back
propagation.

3. Proposed Approach

3.1. Graph Construction

Compared with the specific framework of Graph Neural Networks (GNNs), a rea-
sonable and interpretable graph structure determines the upper limit of model
accuracy to a greater degree. We construct graph structures for users and items
respectively to enrich their embeddings for both attribute information and the
corresponding topology. Embeddings richer in semantic information directly ben-
efit the downstream frameworks for feature interaction to achieve better perfor-
mance. Graph construction is based on the following accepted assumptions:

• Users who click on the same item have a degree of interest similarity. The
degree of interest similarity of users is related to the number of the same
items they clicked in general.

• Items which are continuously clicked by the same user have a certain co-
occurrence relation. The degree of co-occurrence relation of items depends on
the times of being clicked by the same users continuously.

Given the item set I = {i1, i2, ..., iN}, the user set U = {u1, u2, ..., uM},
and the click behaviors bj = [ij1 , ij2 , ..., ijk ] of each user uj , where N and M
represent the total number of items and users respectively, and the length of the
click behaviors k is different for different users, we construct a user co-interest
graph Gu = (U, Eu) and an item co-occurrence graph Gi = (I, Ei), where Eu
and Ei are the weighted edge sets of the user co-interest graph and the item
co-occurrence graph, respectively.

The construction of the item co-occurrence graph is shown in figure 2(a). Re-
ferring to (Li et al. 2019), we iterate through each user’s click behavior sequences
in chronological order to connect items that have been continuously clicked. If
the two items are connected for the first time, their weight is set to one, other-
wise, their weight is increased by one. A bigger weight between any two items
illustrates it is more possible for them to be continuously clicked again.

On the other side, the user co-interest graph is shown in figure 2(b), where sj
represents the user set clicked the same item ij . We connect all users who have
clicked the same non-popular item, whose clicked number is smaller than maxi-
mum length Lu, for popular items lead to considerable meaningless relationships
of users constructed and increase the complexity of the graph. If they have been
connected, the weight is increased by one. In this way, a bigger weight between
users means more similar click interests.

Based on this, we obtain the weighted adjacency matrices Ai ∈ RN×N and
Au ∈ RM×M to describe the connection relationship and strength among items
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(a) Item co-occurrence graph
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(b) User co-interest graph

Fig. 2. An illustration of graph construction, where bi represents the sorted click
behavior sequences of user i, sj represents the user set clicked item j, and j will
be regarded as a popular item if the length of sj is longer than Lu

or users. It is emphasized that not only can the user embedding and the item
embedding be optimized through our model, but also others with latent graph
structures are well applied.

3.2. Graph Relation Embedding Network

In the item co-occurrence graph and the user co-interest graph, connected nodes
have similar clicked intentions or click interests. For example, when the user
uj clicks on the item im, it is extremely possible that uj will click on another
item that has a co-occurrence relationship with im, and im will be clicked by
another user that has a co-interest relationship with uj . It will be reflected in
the relative position in the feature space, where the embedding representations
of co-occurrence items or co-interest users are more closer through the neighbor
aggregation of nodes on the graph.

Graph Relation Embedding Network architecture is shown in figure 3. Taking
item feature as an example, we define the initial embedding matrix X ∈ RN×d,
the weighted adjacency matrix A ∈ RN×N of the graph structure, and the
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Fig. 3. Specific implementation of the Graph Relation Embedding Network

edges’ degree matrix D ∈ RN×N , where d is the dimension of embeddings and
Dii =

∑
j Ai,j . The Graph Convolutional Network (GCN) was proposed in (Kipf

and Welling 2016a):

H = GXΘ = D̃−1/2ÃD̃−1/2XΘ, (4)

where Ã = A + IN , D̃ = D + IN , IN is an identity matrix whose dimension is
the number of nodes N , and Θ is a learnable right multiplication matrix, which
is used to map the feature space of X to a new feature space. In Eq. (4), the

graph convolution kernel G = D̃−1/2ÃD̃−1/2 is used for feature aggregation of
adjacent nodes.

For the CTR task, the embedding representations of users and items have
exclusive feature space. Therefore, it is unnecessary to perform redundant and
repeated feature space mapping, or introduce considerable optional learnable
parameters resulting in the inference slowdown, which is also verified in (Wu
et al. 2019). From the formula analysis, in our work k order graph convolution
is defined as:

X(k) = GX(k−1), (5)

where X(0) = X which is the initial embedding matrix, and X(k) is the feature
aggregation of X through k times.

When we use multi-order graph convolution to perform the aggregation rep-
resentation of embedding, we will inevitably encounter over-smoothing problems,
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Fig. 4. An illustration of the Graph Contrastive Regularization

i.e. the phenomenon that all node embeddings tend to be consistent, making the
CTR prediction inaccurate. In order to solve the problem, we introduce adapted
order-wise weights. Inspired by the weight of attention defined in (Li et al. 2019),
the weight calculation corresponding to the k order graph convolution is:

α(k) =
1

N

N∑
j=1

σ[(X(k)∥X∥(X(k) −X)∥(X(k) ⊙X))W], (6)

where ·∥· represents matrix concatenation, σ(·) is the sigmoid function, ⊙ denotes
the element-wise product, and W ∈ R4d×1 is the trainable parameter. Then, the
final output of the GREEN is:

Xout =

k∑
j=0

α(j)GX(j). (7)

Eq. (7) brings additional time complexity O(kdM) to base model by sparse
computing, whereM represents the number of edges, andM >> k, d. Reasonable
trimming for edges can effectively accelerate the inference.

Applying the architecture of GREEN, each embedding is learned by more
sufficient data through the graph structure, which greatly alleviates the prob-
lem of data sparsity. Therefore, by truncating outdated historical behaviors, the
graph is adapted to the real-time relationship changed rapidly, and the model
can even obtain higher accuracy with less data.

3.3. Graph Contrastive Regularization

Inspired by the Deep Graph Informax (DGI) (Veličković et al. 2018) model based
on the contrastive paradigm, a regularization method based on graph contrastive
learning is proposed to further suppress overfitting, namely, Graph Contrastive
Regularization (GCR), as shown in figure 4.

The core idea of contrastive learning is to find three components from the
original data: positive sample, negative sample, and anchor. We randomly shuffle

the initial embedding matrix X of nodes to generate fake features X̃, and set

xi and x̃i as the real and fake feature of i-th node. We input X̃ into the same
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GREEN model to obtain the output representation of the embedding layer:

X̃out =

k∑
j=0

α(j)GX̃(j), (8)

where X̃out represents the fake feature matrix. In addition, we use the mean
function as the readout step to extract the graph embedding representation as
the anchor:

R(X) = σ(
1

N

N∑
i=1

xi), (9)

where σ(·) is the sigmoid function. Furthermore, a bilinear scoring function is
utilized as the discriminator:

D(xi, r) = σ(xi
TWr), (10)

where r represents the anchor introduced in Eq.(9), σ(·) is the sigmoid function,
and W ∈ Rd×d is a learnable scoring matrix to generate the sample’s score
for (xi, r). Finally, we use noise contrastive estimation(NCE) loss (Mnih and
Kavukcuoglu 2013):

LGCR = − 1

2M
(
∑
vi∈S

E(X,A)[log D(xout i, R(Xout))]

+
∑
vj∈S

E(X̃,A)[1− log D(x̃out j , R(Xout))]), (11)

where S ⊂ V is a randomly selected subset of the node set V. To balance the con-
sumption of additional resources and the degree of regularization, the size |S| is
adjusted depending on datasets characteristics. By Eq.(11), we effectively maxi-
mizes the mutual information between xout i and R(Xout), i.e. the JS divergence
between the joint distribution and the product of marginal distribution.

LGCR can be directly added to the base model loss Eq. (3) for integrated
end-to-end learning:

L = LBCE + wLGCR, (12)

where w is the weight of the GCR module as regularization term, which balances
the graph contrastive learning and CTR prediction. By sharing parameters of
GREEN, the two tasks complement information and promote learning together,
improving the generalization ability of the model. Specifically, in the training
process, all trainable parameters in the model are optimized by minimizing L.
In the test process, the prediction result is obtained through the main task
without GCR.

Overall, the presence of ancillary loss LGCR has several advantages. First,
the introduction of GCR will maintain certain graph structure information to a
certain extent. Secondly, the multi-task learning paradigm can relieve the over-
fitting phenomenon because it can improve the model’s robustness to unseen
data (Pironkov et al. 2016). Finally, as an ancillary task, it does not impose any
computational burden on the model application.
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Table 1. Statistics of the datasets

Dataset Users Items Categories Samples

Amazon (Electro) 192,403 63,001 801 1,689,188

Amazon (Movies and TV) 123,960 50,052 29 1,697,533

MovieLens 138,493 27,278 21 20,000,263

4. Experiments

4.1. Experimental Settings

4.1.1. Datasets

The statistical information of the datasets is shown in table 1, and the description
is as follows:

Amazon1 (He and McAuley 2016): is used as the benchmark dataset with
pretty rich click behaviors for CTR prediction, which contains product reviews
and metadata. We use two subsets: Electronics andMovies and TV, to vertify
the effect of our embedding optimization method. We group the samples by users,
and each user’s click behaviors can be described as (b1, b2, ..., bn). Our goal is to
predict each user’s n-th click behavior based on the past n− 1 behaviors.

MovieLens2 (Harper and Konstan 2015): is a dataset used to describe users’
ratings ranging from 0 to 5, which is treated as a binary classification problem
here, where the click data with the rating no less than 4 are regarded as positive
samples, and others are regarded as negative. We group the samples by each
user to predict his n-th click behavior following the Amazon dataset. In order to
prevent the over-rich historical information, we take the latest 10 historical click
behaviors as users’ latent interests in our experiments to enhance the prediction
difficulty.

4.1.2. Baselines

We introduce GREEN and GCR successively on five basic models to verify our
methods.

Wide & Deep (Cheng et al. 2016): combined by a wide component and a
deep component is proposed to capture both low-order and high-order feature
interactions, which takes both memory ability and generalization ability of the
model into account.

PNN (Qu et al. 2016): introduces a product layer after the embedding layer
to better extract high-order feature interactions.

Deep Crossing (Shan et al. 2016): uses multiple residual units to mine the
relationship between features, instead of explicitly interacting features.

DeepFM (Guo et al. 2017): combines the advantages of factorization ma-
chines (FMs) and deep learning networks (DNNs) to shorten the convergence
time while ensuring accuracy, where FM extracts low-order feature interactions

1 http://jmcauley.ucsd.edu/data/amazon/
2 https://grouplens.org/datasets/movielens/20m/
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Fig. 5. The relation curve between the weight w of the GCR module mentioned
in Eq.(12) and AUC on Amazon (Electro)
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Fig. 6. The relation curve between the contrastive size |S| of the GCR modul
mentioned in Eq.(11) and AUC on Amazon (Electro), where the total number
of nodes is 192403

through multiple inner product units and a linear unit, and DNN extracts high-
order interactions among features through MLP layers.

DIN (Li et al. 2019): introduces the attention mechanism to extract the users’
latent interests from their own historical behaviors. We combine the feature of
historical behaviors with user profile feature, item feature, context feature, etc,
and then input them to MLP for end-to-end learning.

4.1.3. Matrics

In the field of CTR prediction, AUC is used to evaluate the effectiveness of
models (Fawcett 2006). Since the goal of CTR prediction is to sort the candidate
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Table 2. Prediction results on the Amazon (Electro) dataset

Item Item&User

AUC RelaImpr AUC RelaImpr

Wide & Deep 86.09 0.00% 86.09 0.00%

+GREEN 89.30 8.89% 93.19 19.67%

+GCR 89.30 8.89% 93.24 19.81%

PNN 86.54 0.00% 85.83 0.00%

+GREEN 90.18 9.96% 95.85 27.97%

+GCR 90.30 10.29% 95.88 28.05%

Deep Crossing 86.72 0.00% 85.85 0.00%

+GREEN 89.33 7.11% 93.43 21.14%

+GCR 89.43 7.38% 93.47 21.26%

DeepFM 86.93 0.00% 86.38 0.00%

+GREEN 89.87 7.96% 94.94 23.52%

+GCR 89.95 8.17% 95.36 24.68%

DIN 87.15 0.00% 87.27 0.00%

+GREEN 91.37 11.35% 94.16 18.48%

+GCR 91.45 11.57% 94.34 18.96%

items of each user, there are differences among different users, such as some users
have a higher click rate or often give higher scores to items. Therefore, we use
GAUC proposed by (Zhu et al. 2017) as our AUC matric:

AUC =

∑n
i=1 #impressioni ×AUCi∑n

i=1 #impressioni

. (13)

Furthermore, RelaImpr (Yan et al. 2014) is used to measure relative improve-
ment:

RelaImpr = (
AUC(objective model)− 0.5

AUC(base model)− 0.5
− 1)× 100%. (14)

4.1.4. Implementation

To verify the validity, the hyperparameters for all models are consistent, followed
by (Zhou et al. 2017). The models are learned by the Adam optimizer, the
learning rate is set to 0.001, and its decay rate is 0.9 per 336000 samples. For
all datasets, the training batch size is set to 32, the testing batch size is set to
512, the embedding dimension d is set to 128, the maximum length Lu is set to
40, the order k of GREEN is set to 4, and the sigmoid function is used as the
activation function.

For the GCR module, the contrastive size |S| is relevant to the scale of the
dataset, and the weight w is relevant to the model. For Amazon (Electro), |S| and
w are set to 3000 and 0.01, respectively. For MovieLens, |S| is set to 1000, and
w is set to 2 for all except 0.001 for Deep Crossing. And for Amazon (Movies
and TV), |S| is set to 25000, and w is set to 0.01, 0.001, 0.1, 0.001, 0.1 for
Wide & Deep, PNN, Deep Crossing, DeepFM and DIN, respectively. In order
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Table 3. Prediction results on the MovieLens dataset

Item Item&User

AUC RelaImpr AUC RelaImpr

Wide & Deep 71.73 0.00% 71.00 0.00%

+GREEN 72.83 5.06% 71.59 2.81%

+GCR 72.83 5.06% 72.21 5.76%

PNN 73.50 0.00% 73.92 0.00%

+GREEN 74.45 4.04% 74.54 2.59%

+GCR 74.55 4.47% 75.40 6.19%

Deep Crossing 72.41 0.00% 72.00 0.00%

+GREEN 73.59 5.27% 72.77 3.50%

+GCR 73.68 5.67% 72.79 3.59%

DeepFM 73.66 0.00% 75.74 0.00%

+GREEN 74.73 4.52% 76.06 1.24%

+GCR 75.22 6.59% 76.07 1.28%

DIN 74.53 0.00% 73.97 0.00%

+GREEN 75.76 5.01% 75.85 7.84%

+GCR 75.83 5.30% 76.04 8.64%

to study the performance impact of the two parameters in the GCR module,
we conduct experiments by introducing GREEN and GCR in deepfm on the
Amazon (Electro). As can be seen from figure 5, by fixing |S| to 3000, AUC
varies with w, and the model performs best when w is set to 0.01. Similarly, by
fixing w to 0.01, the model performs best when |S| is set to 3000 as shown in
figure 6.

4.2. Ablation Study

Based on Wide & Deep, PNN, Deep Crossing, DeepFM and DIN, we extract
item features and user features of click samples in turn to verify the validity of
the item co-occurrence graph and the user co-interest graph applied GREEN
architecture and GCR successively, and the experimental results are shown in
table 2, table 3, and table 4. On all base models and datasets, GREEN can
provide consistent and significant performance improvement, even relaImpr is
up to 27.97%. Compared to MovieLens with richer samples, GREEN has more
impressive improvements on Amazon with sparse samples, which proves that
our model can relieve the problem of data sparsity. Moreover, the introduction
of GCR can achieve further performance improvements.

4.3. Comparative Study

To further verify the effectiveness of our methods, we compare with the existing
CTR models for feature optimization. DUSIN (Kim et al. 2021) and DDIL(Zhang
et al. 2021) are both sequential recommendation models for CTR prediction,
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Table 4. Prediction results on the Amazon (Movies and TV) dataset

Item Item&User

AUC RelaImpr AUC RelaImpr

Wide & Deep 88.44 0.00% 87.43 0.00%

+GREEN 92.58 10.77% 94.51 18.92%

+GCR 92.60 10.82% 94.69 19.40%

PNN 89.33 0.00% 89.40 0.00%

+GREEN 93.19 9.81% 96.14 17.11%

+GCR 93.25 9.97% 96.14 17.11%

Deep Crossing 89.50 0.00% 88.46 0.00%

+GREEN 92.54 7.70% 94.73 16.30%

+GCR 92.55 7.72% 94.83 16.56%

DeepFM 90.13 0.00% 89.27 0.00%

+GREEN 93.04 7.25% 95.24 15.20%

+GCR 93.06 7.30% 95.32 15.40%

DIN 89.47 0.00% 88.60 0.00%

+GREEN 93.37 9.88% 94.84 16.17%

+GCR 93.45 10.08% 95.03 16.66%

which model behavior sequences to optimize the feature of user interest. DUSIN
extracts and segments users’ dynamic interests by considering the user’s own
historical sequence and potential interests of similar users. DDIL divides user
interests into local sessions and global sessions, which are used to capture users’
short-term dynamic interests and long-term interests, respectively. In addition,
DDIL learns the heterogeneous behaviors within the sessions with consistency
learning. The two models both concatenate user feature, item feature, and the
optimized feature of user interest into a multiple layer perception (MLP).

The experimental results in table 5 show that, in most cases, the model per-
forms best by introducing GREEN rather than DUSIN or DDIL. Moreover, it
can bring further performance improvement when utilizing our proposed embed-
ding optimization method on the item feature and user feature of DUSIN and
DDIL.

4.4. Historical Behavior Truncation Study

We restrict the number of click behaviors of each user as l for sparse data on Ama-
zon (Electro), i.e. retain the latest l historical behaviors (bn−l, bn−l+1, ..., bn−1)
in the behavior sequences (b1, b2, ..., bn−1). The truncation parameters and ex-
perimental results are shown in table 6, where m represents the maximum num-
ber of behaviors, and r% represents the proportion of samples retained in the
dataset. It is obvious that GREEN achieves a greater performance improvement
for more sparse click behaviors. Through the experimental results, we observe
that for lower m, the accuracy of the base model decreases due to data sparsity,
but the GREEN-based model shows a remarkable upward trend. It shows that
the GREEN framework is less sensitive to data sparsity, because relatively com-
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Table 5. Prediction results of comparative study on three CTR datasets

Item Item&User

Amazon (Electro) AUC RelaImpr AUC RelaImpr

MLP 85.78 0.00% 84.92 0.00%

+DUSIN 86.98 3.35% 87.14 6.36%

+DDIL 87.12 3.75% 85.91 2.84%

+GREEN 89.28 9.78% 93.02 23.20%

+DUSIN +GREEN 91.53 16.07% 94.32 26.92%

+DDIL +GREEN 88.33 7.13% 93.08 23.37%

MovieLens AUC RelaImpr AUC RelaImpr

MLP 71.65 0.00% 70.69 0.00%

+DUSIN 71.01 -2.96% 70.30 -1.88%

+DDIL 75.08 15.84% 74.93 20.49%

+GREEN 72.90 5.77% 71.67 4.74%

+DUSIN +GREEN 72.95 6.00% 72.12 6.91%

+DDIL +GREEN 75.95 19.86% 76.29 27.07%

Amazon (Movies and TV) AUC RelaImpr AUC RelaImpr

MLP 88.53 0.00% 87.15 0.00%

+DUSIN 89.22 1.79% 87.80 1.75%

+DDIL 89.82 3.35% 86.13 -2.75%

+GREEN 92.49 10.28% 94.56 19.95%

+DUSIN +GREEN 93.88 13.89% 95.35 22.07%

+DDIL +GREEN 94.79 16.25% 95.07 21.32%

plete graph structures can be constructed with limited historical behaviors, and
even the graphs constructed by more real-time data can achieve more excellent
performance.

4.5. Graph Convolution Order Study

We conduct experiments on Amazon (Electro) about different convolution or-
ders k on the graph convolution architecture and the GREEN architecture re-
spectively, and the experimental results are shown in figure 7. Graph convolution
method utilizes the final order as node representations after multiple aggregation,
where GREEN introduces adaptive order-wise weights among different orders.
On the item co-occurrence graph, when the order k is more than 3, the accuracy
of the graph convolution method decreases due to over-smoothing, while the ac-
curacy of GREEN has been continuously improved with the increasing order. On
the two graphs, the accuracy of the graph convolution method has been main-
tained at a low level with the increase of k, where GREEN achieves considerable
performance by learning excellent adaptive order-wise weights among multiple
orders.
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Table 6. Historical behavior truncation experimental results on Amazon (Electro)

m(r%) 20(90.10%) 12(80.49%) 9(71.90%) 7(61.92%)

6(54.47%) 5(44.25%) 4(29.50%) 3(14.75%)

Wide & Deep 85.73 85.56 85.29 85.14

85.06 84.73 83.78 82.05

+GREEN 93.13(+7.4) 93.40(+7.84) 93.34(+8.05) 93.11(+7.97)

93.16(+8.10) 93.51(+8.78) 92.46(+8.68) 91.66(+9.61)

PNN 86.37 86.24 86.06 85.81

85.69 85.31 84.50 83.24

+GREEN 95.86(+9.49)96.19(+9.95) 96.37(+10.31)96.51(+10.70)

96.85(+11.16)97.16(+11.85)97.72(+13.22) 98.13(+14.89)

Deep Crossing86.23 86.15 85.96 85.82

85.41 85.26 84.43 82.94

+GREEN 93.00(+6.77)92.99(+6.84) 92.87(+6.91) 93.15(+7.33)

93.37(+7.96) 94.07(+8.81) 93.86(+9.43) 94.52(+11.58)

DeepFM 86.65 86.57 86.60 86.13

86.04 85.56 84.83 83.69

+GREEN 95.22(+8.57)95.69(+9.12) 95.89(+9.29) 96.24(+10.11)

96.49(+10.45)96.96(+11.40)97.19(+12.36) 97.63(+13.94)

DIN 87.00 86.65 86.67 86.25

85.98 85.52 84.58 83.15

+GREEN 94.08(+7.08)94.29(+7.64) 94.24(+7.53) 94.44(+7.53)

94.66(+8.46) 94.61(+9.09) 94.98(+10.40)94.36(+11.21)

4.6. Overfitting Analysis

Figure 8 illustrates the trend of training loss and test loss on Amazon (Electro).
Compared with base models, GREEN leads to a rapid drop in loss value, which
is significantly lower than the original. It can be seen from figure 8, when the
number of training steps reaches 160000 to 180000, the training loss of almost
all models decreased, while their test loss increased, which shows that there is
an overfitting phenomenon. By introducing GREEN and GCR, the phenomenon
is alleviated effectively, and the degree of separation between train and test
loss curves is reduced, which proves that it can alleviate the phenomenon of
overfitting. Moreover, GCR further reduces the minimum loss to obtain better
accuracy base on GREEN.

4.7. Application Analysis

The inference time for the test set and the trainable parameter quantity of our
models are shown in table 7. The inference time is measured in a single NVIDIA
GTX 2080Ti GPU. Neither GREEN nor GCR will significantly increase the
number of learnable parameters. GREEN sacrifices a certain amount of time
to bring significant performance improvement, which promotes the accuracy of
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Fig. 7. The relation curve between order k and AUC on Amazon (Electro), where
GC represents the graph convolution method without adapted order-wise weights

CTR prediction to a new level. Moreover, due to the independence of GCR, it
do not affect the inference time during the test process.

5. Related Work

5.1. Deep CTR

Many methods for feature interaction appeared in the field of CTR prediction,
such as Logistic Regression (LR) (Richardson et al. 2007), Factorization Ma-
chine (FM) (Rendle and Schmidt-Thieme 2010), or Field-aware Factorization
Machines (FFM) (Juan et al. 2016). Benefiting from the advantages of deep
learning, some combined models based on deep neural networks have greatly im-
proved the accuracy of CTR prediction. Product-based Neural Network (PNN)
(Qu et al. 2016) utilizes product layers for feature intersection. Wide & Deep
architecture (Cheng et al. 2016) takes both memory ability and generalization
ability of the model into account. DeepFM (Guo et al. 2017) uses a factorization
machine to enhance the capability of feature interaction. Deep Interest Network
(DIN) (Zhou et al. 2017) introduces the attention mechanism to mine users’ in-
terest, and Deep Interest Evolution Network (DIEN) (Zhou et al. 2019) further
excavates the transfer of users’ interest to assist prediction. Our optimization
method for the embedding layer is universal and compatible with all the above
models.

5.2. Graph Neural Network

Graph Neural Networks (GNNs) received unprecedented attention in recent years
because of its efficient performance (Xu et al. 2018), such as graph convolutional
networks (GCNs) (Kipf and Welling 2016a), graph attention networks (GATs)
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Fig. 8. The curve of loss on Amazon (Electro)

(Veličković et al. 2017), and GraphSAGE (Hamilton et al. 2017). They are based
on the methods of neighbor aggregation to integrate the node information to
optimize downstream tasks (Zhou et al. 2018). Graph-based tasks have been
expanded to include representation learning(Kipf and Welling 2016b) (Cui et al.
2020), clustering (Bo et al. 2020) (Li et al. 2020), and link prediction (Chen et al.
2020), etc. We design the GNN framework to optimize the learning ability of the
embedding layer and introduce various skills to minimize the inference time and
solve the over-smoothing problem.

On the other side, graph contrastive learning prospers in the field of graph
embedding. Deep Graph Infomax (DGI) (Veličković et al. 2018) introduces the
work of Deep Infomax (DIM) (Hjelm et al. 2018) into the graph field. DGI
constructs negative samples through feature shuffle and learns better node em-
beddings by maximizing mutual information between local representations and
global graph representations. Inspired by this, we propose a graph contrastive
regularization method for the deep CTR model to maintain a certain graph
structure and suppress the overfitting problem.

5.3. Graph on Recommendation

Recommender systems (Yi et al. 2019) (Liu et al. 2020) use certain algorithms
to solve the problem of information overload, and filter out different candidate
sets for different users quickly and individually, which are mostly used in search
engines, movies (Li et al. 2022) (Zhang et al. 2015), e-commerce (Zhao et al. 2015)
and other fields. Graph learning has a wide range of meaningful applications
(Zhang et al. 2019) (Fan et al. 2019), and researchers have tried to introduce them
into the recommendation field. Taking collaborative filtering as an example, its
core information, the sparse user-item matrix, is a ready-made graph structure.
Therefore, the inherent information can be mined in the form of graphs, such
as NGCF (Wang et al. 2019) and the faster and lighter Light-GCN (He et al.
2020).

In the field of CTR, Graph Intention Network (GIN) (Li et al. 2019) utilizes
historical click behaviors to construct the co-occurrence graph of items, and uses
the GAT to aggregate neighbor nodes to solve the problems of sparseness and
weak generalization. However, GIN leaves a lot to be desired, such as under-
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Table 7. The inference time for the test set and the trainable parameter quantity
of our models for Amazon (Electro)

Model Times(s) Trainable Params

Wide & Deep 5.960 28.815M

+GREEN(k=1) 23.980 28.827M

+GREEN(k=2) 37.305 28.827M

+GREEN(k=3) 52.966 28.828M

+GREEN(k=4) 60.050 28.829M

+GCR 61.246 28.849M

PNN 5.809 28.826M

+GREEN(k=1) 21.747 28.826M

+GREEN(k=2) 32.490 28.827M

+GREEN(k=3) 48.207 28.828M

+GREEN(k=4) 60.318 28.829M

+GCR 61.170 28.849M

Deep Crossing 7.913 28.923M

+GREEN(k=1) 20.659 29.088M

+GREEN(k=2) 34.208 29.089M

+GREEN(k=3) 47.789 29.090M

+GREEN(k=4) 60.914 29.091M

+GCR 61.845 29.111M

DeepFM 7.892 28.815M

+GREEN(k=1) 23.671 28.826M

+GREEN(k=2) 33.735 28.827M

+GREEN(k=3) 47.778 28.828M

+GREEN(k=4) 59.766 28.828M

+GCR 59.055 28.849M

DIN 9.755 28.869M

+GREEN(k=1) 22.956 28.881M

+GREEN(k=2) 37.114 28.882M

+GREEN(k=3) 47.106 28.882M

+GREEN(k=4) 59.447 28.883M

+GCR 60.337 28.904M

utilized relationship information, considerable parameters, and slow convergence
speed. Our work is mainly to carry on a series of research and optimization to
solve the weakness of the graph method in the field of CTR prediction.

6. Conclusion

In this paper, we offer the guidance of graph construction with interpretability,
introducing graph learning methods into the field of CTR prediction. To take
advantage of the prior relationship mined in the graphs, we propose a novel
embedding framework named Graph Relation Embedding Network (GREEN),
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which utilizes multi-order graph convolution and adaptive order-wise weight-
ing to aggregate information for a more reasonable feature space. Moreover, a
Graph Contrastive Regularization (GCR) module is designed to further nor-
malize graph embedding by maintaining certain graph information. We conduct
extensive experiments and the results verify that our methods can achieve con-
siderable performance improvement to promote the accuracy of CTR prediction
to a new level. In future work, the methods of efficient GNN and lightweight
graph construction will bring more application prospects to the application of
graphs in the CTR field.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. and Bengio, Y.
(2017), ‘Graph attention networks’, arXiv preprint arXiv:1710.10903 .
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Abstract—As the core infrastructure service of cloud comput-
ing, Elastic Compute Service (ECS) offers a diverse range of
products for users to select from. However, it is challenging for
users to combine numerous configurations for the appropriate
products, making it critical to be recommended individually. In
contrast to traditional recommendation scenarios, ECS combines
Business-to-Business (B2B) and Business-to-Consumer (B2C).
Compared with enterprise users with rich behaviors, individual
users account for a large proportion with limited behaviors,
facing a serious cold start problem. Furthermore, enterprise
users have high demands and strong preferences, leading to a
high concentration on popular products, resulting in long tail
distribution. To address the problems, we propose a novel model
named the Representation Enhancement based Cold Start Model
(ReCSM). Based on dynamic relations among users, the Cold
start user Contextual Attention Module (CCAM) is designed to
enhance the representation of cold start users with behavior-rich
users, thus improving the expressiveness of the inductive model.
What’s more, the Generalized Attribute Clustering Embedding
module (GACE) is proposed to maintain the clustering center
representation for each user to improve the generalization ability.
Additionally, we implement the Contrastive Learning based Long
tail products Enhancement Module (CL-LEM) to relieve the
effect of long tail distribution, ensuring the diversity and fairness
of recommendation results. Extensive experiments have proved
the validity of ReCSM on two real ECS datasets and one public
dataset.

Index Terms—Recommender System, Elastic Compute Service,
Cold Start Problem, Long Tail Effect, Contrastive Learning

I. INTRODUCTION

As the core service of cloud computing, Elastic Compute

Service (ECS) is becoming increasingly important in a wide

range of scenarios due to its stability, reliability, and scal-

ability. With the number of products increasing, it becomes

challenging for users to choose the appropriate products from

numerous configurations. Therefore, it is crucial to recommend

the proper products for users in the ECS selling domain,

* Corresponding author

improving user experience and platform revenue, which are

of significant research and commercial value.

It is the core step to model users’ preferences by learning

historical behavior data in the mainstream recommendation

scenarios, such as service recommendation [1], [2], social

network recommendation [3], [4], and e-commerce recommen-

dation [5], [6], to filter out the corresponding candidate sets

individually.

Compared with common recommendation scenarios, ECS

combines Business-to-Business (B2B) and Business-to-

Consumer (B2C). According to the number of their behavior,

enterprise users with high demands and strong preferences are

typically identified as warm start users in this scenario. In

contrast, individual users with limited and diverse demands

are typically identified as cold start users, while accounting

for a large proportion. Therefore, ECS recommendation faces

a more significant cold start problem. To address the cold

start problem, side information including attribute [7]–[9]

and context information [10], [11] is used to enrich user

representation, but it struggles with limited expressiveness.

The best strategy to improve the expressiveness of the model

is to train ID embedding for each user to capture their

behaviors and preferences. However, it is difficult to be trained

sufficiently for users with a lack of behaviors, even impossible

for new users, making the training process transductive. In

summary, the key to solving the cold start problem is to

balance expressiveness and generalization ability.

In addition, high demands and strong preferences from

enterprise users lead to the dominance of popular products,

which exacerbates the long tail effect. Thus, long tail products

are challenging to train effectively due to limited behavior

data. As a result, the model tends to recommend popular

products, leading to a vicious circle that long tail products

are less likely to be purchased due to few exposures. Inverse

Propensity Weighting (IPW) [12], [13] is commonly used to
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alleviate the long tail effect, which accurately assigns higher

weights to long tail products and lower weights to popular

products.

In order to address the above problems in the ECS recom-

mendation, we propose an inductive model named ReCSM,

which improves the prediction accuracy of warm, cold, and

strict cold start users, respectively. Additionally, long tail prod-

ucts are enhanced for better representation. The contributions

of this paper are as follows:

• To enhance the representations of cold and strict cold

start users, we propose the Cold start user Contextual

Attention Module (CCAM) mingles adjacent warm users

with rich behaviors, improving the expressive ability of

the model.

• To strengthen the generalization of user features, we

propose the Generalized Attribute Clustering Embed-

ding module (GACE), which maintains the corresponding

clustering center representation for each user as one of

the model input features.

• To relieve the long tail effect on products, we propose the

Contrastive Learning based Long tail products Enhance-

ment Module (CL-LEM) for data augmentation on long

tail products to incorporate unique information, ensuring

the diversity and fairness of recommendation results.

• We demonstrate the effectiveness of ReCSM in ECS rec-

ommendation using two authentic datasets from Alibaba

Cloud and prove its validity in common recommendation

scenarios using the public dataset.

II. PRELIMINARY

In this section, we introduce the main symbols and their

explanations in Table I, and present the definitions of key

concepts as follows:

Definition 1. Warm/Cold/Strict Cold Start Users. In this

paper, we classify users into warm start users Uw, cold start

users Uc, and strict cold start users Usc based on the number

of their purchase behaviors, where corresponding numbers are

Nw = |Uw|, Nc = |Uc|, Nsc = |Usc|, for the total number

N = |U|. Warm start users have at least t behaviors, cold start

users have fewer than t behaviors, and strict cold start users

have not appeared in the training process. Warm start users

are mostly enterprise users with abundant behaviors, whose

preferences can be well captured. On the other hand, it is

challenging to learn the preferences of cold and strict cold

start users, which is the focus of this paper.

Definition 2. Long Tail Products. We specify products that

have been purchased less than i as long tail products It, whose

number Mt = |It| and the total number of products M = |I|.
Definition 3. Prediction Tasks for Diverse Users. For both

warm and cold start users, ReCSM learns on the train data

of corresponding users. However, for strict cold start users,

ReCSM utilizes the train data of cold start users for prediction.

TABLE I: Symbols used in this paper

Symbols Description

Uw Warm start users

Uc Cold start users

Usc Strict cold start users

Nw = |Uw| The number of warm start users

Nc = |Uc| The number of cold start users

Nsc = |Usc| The number of strict cold start users

N = |U| The total number of users

It Long tail products

Mt = |It| The number of long tail products

M = |I| The total number of products

prew The pretrained ID embedding of warm start users

Trw The train data of warm start users

Tew The test data of warm start users

Trc The train data of cold start users

Tec The test data of cold start users

Tesc The test data of strict cold start users

III. METHOD

A. Model Framework

Each sample of purchasing behavior can be represented as

(x, y), where y ∈ {0, 1} denotes whether the user purchased

the target product, x =
[
xid
U ,x

att
U ,xclu

U ,xid
I ,x

att
I , ...

]
repre-

sents the features of user id, user attribute, user cluster, product

id, product attribute, or others.

Since discrete features are often encoded to sparse one-hot

vectors, they are densified through an embedding layer:

ei = fi (xi) , (1)

where xi represents the above feature, and ei represents the

corresponding embedding. fi briefly follows the table lookup

mechanism in general, while f id
U , f clu

U and f id
I are optimized

in section III-B, section III-C and section III-D, respectively.

The specific method of optimization is shown in Figure 1.

Furthermore, the prediction result is obtained through fea-

ture interaction:

ŷ = σ
(
g
(
eidU , e

att
U , ecluU , eidI , e

att
I , ...

))
, (2)

where g(·) represents the feature interaction function, multi-

layer perceptrons are used here followed [14], σ(t) = 1
1+e−t

denotes the sigmoid activation function, and ŷ is the prediction

result of the current data x.

In the training process, the binary cross entropy loss func-

tion is utilized to calculate the loss of the prediction:

LBCE = − 1

n

n∑
j

[yj log ŷj + (1− yj) log (1− ŷj)] . (3)

To optimize the training process, we design the auxiliary tasks

in section III-C and section III-D, whose loss functions are

added to LBCE as penalty terms for joint training.
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Fig. 1: The overall framework of ReCSM, where eid
U , eclu

U , and eid
I are enhanced by CCAM, GACE, and CL-LEM, respectively

B. Cold Start Contextual Attention Module

It is essential to model users’ preferences through their

historical behavior as ID embeddings. However, training ID

embeddings for cold and strict cold start users is challenging

due to insufficient behavioral data. Therefore, we propose

CCAM to enhance the representations of cold and strict cold

start users with the rich data of warm start users. The specific

module is shown in Figure 2.

Firstly, we pre-train an ID embedding prew ∈ Rd us-

ing rich behaviors of warm start users to accurately reflect

their preferences. Specifically, we pre-train according to sec-

tion III-A, where features include user id, user attribute, user

cluster, product id, and product attribute. fi follows the table

lookup mechanism, except f clu
U is optimized in section III-C.

The preference representation of warm start users prew is

continuously optimized during the pre-training process.

Secondly, we calculate the attribute similarity between cold

and warm start users to construct the graph C2W, where C2W

∈ RNc×Nw . C2W is a bipartite graph with nodes representing

cold and warm start users respectively. An edge is created

between the cold and the warm start user if their attribute

similarity exceeds the threshold D. SC2W ∈ RNsc×Nw is

constructed in the same way by calculating the similarity

between strict cold and warm start users.

In order to accurately measure the contribution of different

adjacent warm start users wj ∈ Nci to the cold start users ci,
we learn the adaptive coefficient α

wj
ci to aggregate the well-

Fig. 2: The specific implementation of CCAM

trained prew to enrich the information of cold start users:

αwj
ci =

exp
(
LeakyReLU

([
Wxatt

ci ‖Wxatt
wj

]))
∑

wk∈Nci
exp

(
LeakyReLU

([
Wxatt

ci ‖Wxatt
wk

])) ,
(4)
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where xatt
ci ∈ Rd and xatt

wj
∈ Rd represent the corresponding

attribute features, d represents its dimension, and W ∈ Rd×d

is the weight matrix. By aggregating the well-trained ID

embeddings of neighbor warm start users, the self-node rep-

resentation is enhanced as:

eidci = σ

⎛
⎝ ∑

wj∈Nci

αwj
ci Wprewj

⎞
⎠ . (5)

Similarly, every strict cold start user can generate its prefer-

ence representation eidsci as above.
What’s more, for warm start users, we further optimize their

representations based on prew. To provide warm start users

with more comprehensive information, we construct W2W ∈
RNw×Nw with nodes representing warm start users. An edge

is created between every two users if their attribute similarity

exceeds the threshold D. We apply the adaptive coefficients

to aggregate the neighbor nodes on W2W for each warm start

user, where the coefficient of the two warm start users wi and

wj is:

αwj
wi

=
exp

(
LeakyReLU

([
Wxatt

wi
‖Wxatt

wj

]))
∑

wk∈Nci
exp

(
LeakyReLU

([
Wxatt

wi
‖Wxatt

wk

])) .
(6)

We aggregate neighbors adaptively to effectively enhance the

representation of warm start user wi:

e′idwi
= σ

⎛
⎝ ∑

wj∈Nci

αwj
wi

Wprewj

⎞
⎠ . (7)

Finally, the node representation is updated as its preference:

eidwi
= Relu(W′([e′idwi

||prewi
])), (8)

where the weight matrix W′ ∈ R2d×d.

C. Generalized Attribute Clustering Embedding module
We design a graph clustering task on user attributes, named

GACE shown in Figure 3, to identify the cluster center

representation xclu
U for each user as the input feature of the

model. By jointly maintaining the cluster center representation,

both cold and strict cold start users can be learned alongside

other behavior-rich users in the same cluster, improving the

generalization ability of the model. Additionally, GACE stan-

dardizes the representations of users and their corresponding

clusters, which improves the cohesiveness of user represen-

tations within the same cluster, making it more suitable for

downstream tasks.
Specifically, we use the classical k-means algorithm [15] to

cluster users based on their attribute features Xatt
U ∈ RN×d,

generating the initial parameters C ∈ RK×d of K cluster

center representations and determining the cluster to which

each user belongs as Ui ∈ c.
In addition, we learn the cluster center representations as

the input feature of the model by updating the weight matrix

Wclu ∈ Rd×d in the process of training:

ecluUi
= Wcluc

T , (9)

Fig. 3: An illustration of GACE

where the cluster center embedding is maintained jointly by

users in the same cluster.

What’s more, referring to DAEGC [16], we calculate the

similarity of users and their clustering centers as the probabil-

ity that a user belongs to this cluster, i.e., the distribution of

users:

quc =

(
1 +

∥∥eidUi
− ecluUi

∥∥2
)−1

∑
k

(
1 +

∥∥eidUi
− ecluUk

∥∥2
)−1 . (10)

The target distribution of users and corresponding clustering

centers is:

puc =
q2uc/

∑
u quc∑

k (q
2
uk/

∑
u quk)

. (11)

We force the distribution Q to be closer to the target distri-

bution P by minimizing Kullback-Leibler Divergence [17] of

the two distributions:

LKL = KL(P‖Q) =
∑
u

∑
c

puc log
puc
quc

. (12)

In summary, we minimize LKL by decreasing the intra-

class distance and increasing the inter-class distance, thus

normalizing the embedding eidU of the user and the embedding

ecluU of the cluster to which the user belongs.

D. Contrastive Learning based Long tail Products Enhance-
ment Module

It is challenging for long tail products to be learned ef-

fectively due to limited training data. Thus we propose CL-

LEM which employs contrastive learning to augment the

representations of long tail products, thereby mitigating the
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Fig. 4: The details of CL-LEM

impact of the long tail distribution and ensuring the diversity

and fairness of recommendation results, shown in Figure 4.
The core idea of contrastive learning is to find three compo-

nents from the original data: positive sample, negative sample,

and anchor.
For each sample (xUi

,xIj , . . . , y), we randomly sample a

negative sample Ĩt from long tail products that the user Ui
has not purchased. We then utilize the same parameter-sharing

embedding layer, which is followed by the lookup mechanism,

to obtain representations eIj and ẽIt for the positive sample

Ij and the negative sample Ĩt respectively. In addition, the

mean function is used as the readout step to extract the global

product representation as the anchor:

R = σ

⎛
⎝ 1

M

M∑
j=1

eIj

⎞
⎠ . (13)

Furthermore, a bilinear scoring function is utilized as the

discriminator:

D
(
eIj ,R

)
= σ

(
eIjWconR

)
, (14)

where Wcon ∈ Rd×d is a learnable scoring matrix to generate

the score of sample for
(
eIj ,R

)
. Finally, we use contrastive

noise estimation (NCE) loss [18] to maximize the mutual

information between local representations and global represen-

tations, i.e., the JS divergence between the joint distribution

and the product of marginal distribution:

LNCE = − 1

2M

(∑
E
[
logD

(
eIj ,R

)]
+

∑
E [1− logD (ẽIt ,R)]

)
.

(15)

By minimizing LNCE , the representations of long tail products

are enriched with specific and unique global information

without extra labels, relieving the long tail effect.
In summary, we use self-supervised clustering and con-

trastive learning as auxiliary tasks to optimize the main task

prediction for end-to-end training:

L = LBCE + αLKL + βLNCE , (16)

where α is the weight of the clustering auxiliary task and

β is the weight of the contrastive auxiliary task. It is worth

mentioning that the multi-task learning paradigm improves the

robustness of the model without any computational burden

during inference.

TABLE II: Statistics of the datasets

Dataset User Item Samples Density Samples Per User

ECS-QL 71,842 747 1,947,634 3.63% 27

ECS-CL 540,605 1,536 36,054,866 4.34% 67

ML-100k 943 1,682 100,000 6.30% 106

IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: The statistical information of datasets is

shown in Table II, and the description is as follows:

• ECS Datasets includes ECS Quick Launch (ECS-QL)

and ECS Custom Launch (ECS-CL), which are partly

selected from two different ECS sales modes from Al-

ibaba Cloud. We generate the same number of negative

samples as positive samples for each user from products

that were exposed to users but not purchased. Our goal

is to predict each user’s n-th behavior based on the past

n− 1 behaviors.

• MovieLens 1 is chosen to verify the effectiveness of our

model in common recommendation scenarios. To align

with our task, we convert the rating prediction to a binary

classification task by classifying user ratings greater than

3 as positive and others as negative samples. We use 90%

of each user’s behavior data as the train set and 10% as

the test set.

2) Datasets Analysis: We conduct statistical analysis of the

cold start users and long tail items on the three datasets. The

specific information is shown in Figure 5, which consists of

three nested pies, each corresponding to a dataset.

The inner pie displays the proportion of warm, cold, and

strict cold start users, while the second pie shows the propor-

tion of the number of samples per user type. Although users

with less than 20 ratings have been removed from ML-100k,

resulting in no strict cold start users, a proportion of users

still face the cold start problem. Both ECS datasets show a

high proportion of cold and strict cold start users, with cold

start users accounting for over half and strict cold start users

accounting for over a quarter. This highlights significant cold

start challenges in ECS compared to typical recommendation

scenarios. However, the small number of their corresponding

samples makes it difficult to train effectively based solely on

their interaction data.

Furthermore, we classify long tail items into four types,

based on the number of times they were purchased (PN ≤ 1,

2, 4, and 8). The proportion of each type is displayed in the

outer pie. ML-100k has an average of 59 samples per item,

with a certain proportion of items having fewer samples. The

two ECS datasets have a large number of samples per item,

with an average of 2,607 and 23,473 respectively. However,

more than one-quarter of the items have a purchase frequency

of no more than 8, indicating a significant long tail distribution

1https://files.grouplens.org/datasets/movielens/ml-100k/
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in ECS recommendation. This means that a small number of

head items are purchased frequently, while the majority of tail

items are purchased infrequently.

Overall, data analysis has proven that solving the cold

start problem and the long tail effect is crucial for ECS

recommendation and can also improve the performance of

common recommendations.

3) Baselines: We verify our model on 3 transductive mod-

els and 3 inductive models.

• NNMF [19]: A transductive model uses neural networks

to decompose the co-occurrence matrix of users and items

for the hidden vector representations.

• GCMC [20]: A transductive model introduces a graph

encoder to complement high-level information for users

and items.

• DeepFM [20]: A transductive model extracts both low-

and high-order feature interactions through a combination

of FM and MLP.

• GAT [21]: An inductive model enables specifying dif-

ferent weights to different nodes in a neighborhood for

better node representation.

• IDCF [22]: An inductive model computes embeddings

for query users from key users via attention-based struc-

ture on historical behaviors.

• AGNN [23]: An inductive model generates preference

representations for cold start users or items by learning

the attribute distributions.

4) Matrics: In the binary classification task, AUC is widely

used to evaluate the effectiveness of models through the ability

to distinguish between positive and negative samples. Further-

more, RelaImpr is introduced to measure relative improvement

over models followed [14]:

RelaImpr = (
AUC(objective model)− 0.5

AUC(base model)− 0.5
− 1)× 100%.

(17)

5) Implementation: To verify the validity, the hyperparam-

eters for all models are consistent. All models are learned by

the Adam optimizer, the learning rate is set to 0.001, and its

decay rate is 0.9 per 336,000 samples. For all datasets, the

training batch size is set to 64, the testing batch size is set to

32, and the embedding dimension d is set to 128.

In CCAM, the threshold t for the number of behaviors

required for warm start users Uw is set to 10 for ECS-QL and

ECS-CL, and to 30 for the MovieLens dataset. In GACE, the

number of clusters K is set to 15 for ECS-QL and ECS-CL,

and 4 for MovieLens. Additionally, α is set to 1 for ECS-

QL and ECS-CL, and 0.01 for MovieLens. In CL-LEM, for

the three datasets, we set the threshold i for the number of

purchased times for long tail products It to 2. Moreover, β is

set to 0.5 for ECS-QL and ECS-CL, and 0.6 for MovieLens.

For downstream feature interaction, we apply a three-layer

perceptron with 200, 80, and 1 neurons, respectively. While

ReLU is used as the activation function for all layers except

the last one.

TABLE III: Results of the comparative study on the three datasets,
where the bolded numbers in the table represent the best results and
the underlined numbers represent the suboptimal results

Models Params
Strict Cold Cold Warm

AUC RelaImpr AUC RelaImpr AUC RelaImpr

ECS-QL Dataset

NNCF 23.44M 0.9002 0.00% 0.8798 0.00% 0.9245 0.00%

GCMC 24.46M 0.9043 1.02% 0.8806 0.21% 0.8986 -6.10%

DeepFM 23.54M 0.8723 -6.97% 0.8814 0.42% 0.9347 2.40%

GAT 9.46M 0.9131 3.22% 0.8867 1.82% 0.8747 -11.73%

IDCF 23.74M - - 0.8904 2.79% 0.8634 -14.39%

AGNN 0.25M 0.9196 4.85% 0.8938 3.69% 0.8824 -9.92%

ReCSM 10.01M 0.9233 5.77% 0.9038 6.32% 0.9455 4.95%

ECS-CL Dataset

NNCF 173.69M 0.9147 0.00% 0.9048 0.00% 0.8780 0.00%

GCMC 174.72M 0.9191 1.06% 0.9107 1.46% 0.8973 5.11%

DeepFM 173.74M 0.8992 -3.74% 0.8949 -2.45% 0.8950 4.50%

GAT 69.59M 0.9189 1.01% 0.9103 1.36% 0.8787 0.19%

IDCF 174.00M - - 0.9065 0.42% 0.8890 2.91%

AGNN 17.97M 0.9234 2.10% 0.9133 2.10% 0.9027 6.53%

ReCSM 69.78M 0.9319 4.15% 0.9241 4.77% 0.9122 9.05%

MovieLens Dataset

NNCF 92.39K 0.6286 0.00% 0.6263 0.00% 0.7406 0.00%

GCMC 96.55K 0.6694 31.73% 0.6444 14.33% 0.7655 10.35%

DeepFM 91.13K 0.6285 -0.08% 0.6115 -11.72% 0.7283 -5.11%

GAT 359.07K 0.6479 15.01% 0.6688 33.65% 0.7442 1.50%

IDCF 96.54K 0.6488 15.71% 0.6250 -1.03% 0.7670 10.97%

AGNN 123.68K 0.6172 -8.87% 0.6777 40.70% 0.7554 6.15%

ReCSM 334.75K 0.6791 39.27% 0.7245 77.75% 0.7764 14.88%

B. Comparative Study

We validate the effectiveness of our model on ECS-QL,

ECS-CL, and MovieLens datasets based on three transductive

models and three inductive models, respectively. The experi-

ment results show in table III, where IDCF requires the users’

behavior history to calculate similarity, making it unable to

handle the strict cold start problem.

It shows that transductive models typically perform better

on warm start users, but worse on cold and strict cold users.

Because they can model warm start users with rich data,

but struggle to represent cold start users with less behavior

and are unable to handle strict cold start users not appearing

in the training set. Inductive models are more effective in

prediction for cold and strict cold start users than transductive

models. They utilize attribute features or correlative users as

side information to improve the generalization of models for
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Fig. 5: The analysis results of the three datasets. The inner pie displays the proportion of warm, cold, and strict cold start users, while the
second pie shows the proportion of samples per user type. Additionally, the outer pie represents the distribution of different types of items
based on the number of purchased times (PN).

cold start users. However, the models struggle to accurately

capture the personalized demands of warm start users, thus

reducing the upper limit of expressive ability. In contrast,

our model employs different data augmentation for cold start

and warm start users, thus adapting to all types of users.

Furthermore, our model has exceptional real-time performance

due to its minimal number of trainable parameters. With

enhanced representations of users and products, it can perform

well on downstream tasks with few layers. Additionally, we

observed that ReCSM predicts more accurately for strict cold

start users than cold start users in ECS-QL and ECS-CL

datasets. It reveals that the training data of cold start users

can fit the first purchase behavior of strict cold start users

well, and also justifies our training on Trc to predict Tesc.
Unlike ECS datasets with behavior-rich and preference-

focused enterprise users, the MovieLens dataset only contains

individual users, resulting in a lower density of data to hardly

capture users’ preferences. As a result, the AUC on MovieLens

dataset is generally lower than ECS datasets.

C. Ablation Study
We conduct ablation studies on three datasets to demonstrate

the impact of each module. Specifically, we remove the pre-

trained module, CCAM, GACE, and CL-LEM individually

from ReCSM. The experimental results are shown in the

table IV. It can be seen that CCAM is the most important

part of ReCSM on the two ECS datasets. As the key to

solving the cold start problem, CCAM enhances the preference

representation of cold start users through warm start users with

rich data, improving the expressive ability of the inductive

model. However, it is crucial for ReCSM to pre-train on

the MovieLens dataset, which can alleviate the data sparsity

problem by rich behavior data.

D. Cold Start Study
In the cold start scenario, we leverage information from

warm start users to enhance the representation of cold and

TABLE IV: Results of the ablation study on the three datasets, where
the bolded numbers in the table represent the best results and the
numbers with ↓ are the least effective

Variations
Strict Cold Cold Warm

AUC RelaImpr AUC RelaImpr AUC RelaImpr

ECS-QL Dataset

ReCSM-Pretrain 0.9226 -0.17% 0.9019 -0.47% 0.9411 -0.99%

ReCSM-CCAM 0.9175 -1.37% ↓ 0.9033 -0.12% 0.9444 -0.25%

ReCSM-GACE 0.9209 -0.57% 0.9031 -0.17% 0.9330 -2.81% ↓
ReCSM-CL-LEM 0.9222 -0.26% 0.9018 -0.5% ↓ 0.9455 0.0%

ReCSM 0.9233 0.00% 0.9038 0.00% 0.9455 0.00%

ECS-CL Dataset

ReCSM-Pretrain 0.9312 -0.16% 0.9233 -0.19% 0.9034 -2.13%

ReCSM-CCAM 0.9286 -0.76% ↓ 0.9215 -0.61% ↓ 0.9054 -6.10% ↓
ReCSM-GACE 0.9305 -0.32% 0.9218 -0.54% 0.9067 -1.33%

ReCSM-CL-LEM 0.9311 -0.19% 0.9234 -0.17% 0.9072 -1.21%

ReCSM 0.9319 0.00% 0.9241 0.00% 0.9122 0.00%

MovieLens Dataset

ReCSM-Pretrain 0.6586 -11.45% ↓ 0.6965 -12.47% ↓ 0.7755 -0.33%

ReCSM-CCAM 0.6948 8.77% 0.7094 -6.73% 0.7682 -2.97% ↓
ReCSM-GACE 0.6725 -3.69% 0.7051 -8.64% 0.7781 0.62%

ReCSM-CL-LEM 0.6753 -2.12% 0.7199 -2.05% 0.7755 -0.33%

ReCSM 0.6791 0.00% 0.7245 0.00% 0.7764 0.00%

strict cold start users. It means that a smaller proportion of

warm start users results in less side information to enhance the

representation of cold and strict cold start users. Therefore, we

verify the robustness of ReCSM by reducing the proportion of
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TABLE V: AUC of the cold start study on the three datasets, by
reducing the proportion of warm start users

Ratio 80% 60% 40% 20% 10%

ECS-QL Dataset

Strict Cold 0.9225 0.9234 0.9196 0.922 0.9222

Cold 0.9025 0.9028 0.9028 0.9011 0.9022

ECS-CL Dataset

Strict Cold 0.9302 0.9306 0.9304 0.9305 0.9304

Cold 0.9227 0.9241 0.9230 0.9233 0.9237

MovieLens Dataset

Strict Cold 0.6761 0.6801 0.6817 0.6743 0.6666

Cold 0.7166 0.7011 0.7128 0.7100 0.7027

TABLE VI: Results of the long tail study on the ECS-QL dataset

Purchased Number ≤1 ≤2 ≤4 ≤8

Number of Products 78 115 162 214

AUC 0.9536 0.8959 0.9233 0.9257

warm start users. We randomly reduce the proportion of warm

start users to 80%, 60%, 40%, 20%, and 10% of original data,

respectively.

The results indicate that ReCSM maintains high prediction

accuracy for both cold and strict cold start users, in Table V.

This shows that ReCSM effectively mines information from

data and learns accurate representations for cold start users

with minimal data. Its immunity to the number of warm start

users makes it ideal for situations with a significant number

of cold start users.

E. Long Tail Study

To verify that ReCSM can alleviate the long tail effect,

we predict samples of long tail products that have been

purchased no more than 1, 2, 4, and 8. The results show in

Table VI that ReCSM can achieve excellent performance even

for long tail products, thus demonstrating that CL-LEM can

learn sufficiently specific representations by data augmentation

of long tail products. As the number of behaviors increases,

products can be more thoroughly learned, making it easier to

capture purchased tendency. However, products with unique

behavior deviate from this trend, as users who purchase these

unusual products have strong preferences that are prone to be

predicted.

F. Visualization Study

We conduct the visualization study on the contribution of

warm start users to cold and strict cold start users by randomly

selecting 50 users from each group. It can be seen that a subset

of warm start users make a significant contribution to all cold

start users in Figure 6a and Figure 6b. Therefore, we can

(a) Warm / Strict Cold User (b) Warm / Cold User

Fig. 6: The attention values between different types of users

reasonably speculate that a small number of important users

can play a key role in enriching the representation of cold start

users, as demonstrated by the experiment results of the cold

start study in section IV-D.

G. A/B Testing

We conducted A/B testing from 2022-11 to 2022-12 in

Alibaba Cloud comparing ReCSM with the last version of

our online-serving model. The experiment results show that

ReCSM contributes up to 20.78% CTR and 19.83% CVR

(UV order rate), indicating the significant effectiveness and

industrial value of our model.

V. RELATED WORK

A. Cold Start Recommendation

The common solution to the cold start problem is using side

information, such as user attributes, item attributes, contextual

information, and cross-domain information of users and items.

[23] designs a variant of graph neural network named Gated-

GNN, to efficiently aggregate side information from different

modalities in neighboring nodes. An extended variational auto-

encoder (eVAE) [24] module is also introduced to learn the

distribution of attributes and generate preference representa-

tions for strict cold start users and items. IDCF [22] resorts

to attention-based structure learning that estimates hidden

relations from query to key users and learns to leverage meta

latents to inductively compute embeddings for query users via

neural message passing.

B. Long Tail Effect

To mitigate the long tail effect, recommendation systems

mainly focus on addressing bias. Inverse Propensity Weighting

(IPW) [25] is the main method to debias, which assigns higher

weights to long tail items and lower weights to popular items.

Another strategy utilizes neural networks to model the biased

values separately [26]–[28]. For example, [29] mitigates the

selection biases by adopting a Wide & Deep framework.

VI. CONCLUSION

In this paper, we propose a novel ECS recommendation

model named ReCSM, which aims to improve user purchase

experience and platform revenue.
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To enhance the representation of cold start users, CCAM is

proposed to aggregate users with rich behaviors using adaptive

coefficients. Additionally, we design GACE to maintain the

corresponding clustering center representation for each user.

Furthermore, CL-LEM is introduced for data augmentation

on long tail products to ensure diversity and fairness of

recommendation results. We conduct extensive experiments on

two real ECS datasets and the results verify that ReCSM out-

performs existing transductive and inductive models. What’s

more, we prove that ReCSM can be well generalized to

common recommendation scenarios through the public dataset.

In future work, the methods of lightweight graph construc-

tion will improve the performance of real-time recommenda-

tions.
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