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一、个人申报
（一）基本情况【围绕《浙江工程师学院（浙江大学工程师学院）工程类专业学位研究生工

程师职称评审参考指标》，结合该专业类别(领域)工程师职称评审相关标准，举例说明】

1.对本专业基础理论知识和专业技术知识掌握情况

本人周贤攀，硕士期间主要的研究方向为人工智能和计算机视觉。我以优异的成绩完成了课

程的修习，对本专业基础理论知识和专业技术知识掌握良好。涵盖了离散数学、概率统计、

随机过程等数学课程，程序设计语言、计算机网络、数据结构与算法等计算机技术以及机器

学习等相关原理和技能。本人在校期间多次荣获优秀研究生、五好研究生等荣誉称号，并且

获得国家奖学金。

2.工程实践的经历

杭州欣禾圣世科技有限公司成立于2015年08月07日，是一家以从事软件和信息技术服务业为

主的企业。近年来，本单位利用前沿的人工智能技术不断创新，聚焦人工智能服务各项行业

，帮助行业智能系统的构建。本人在该公司期间的主要实践内容为：负责物体检测、视频分

类等计算机视觉相关算法的研究、开发和优化；提高模型准确率和运算效率。

3.在实际工作中综合运用所学知识解决复杂工程问题的案例

本人在杭州欣禾圣世科技有限公司综合运用所学知识解决复杂工程问题。在项目开展过程中

，我们首先进行了对目标检测知识蒸馏的相关研究进展的调研。我们查阅了国内外的文献和

研究成果，了解了目前已有的方案及其能达到的目标、效果和局限性。经过多次讨论和研究

，我们意识到当前方案在一些方面仍有改进空间，因此决定对其进行优化。我们确定了优化

原有基于Logits的知识蒸馏的方案，并使其更贴近任务本身的目标和损失函数。在技术路线

上，我们通过修改两个蒸馏损失函数使其更贴近任务，即二元交叉熵分类知识蒸馏和基于Io

U的定位知识蒸馏来优化原有方案。为了验证改进后的方案的有效性，我们编写了相应的代

码，并进行了大规模实验。在团队分工上，我负责了大部分实验工作。我根据我们的研究方

向和目标，设计并执行了一系列实验，从而验证我们的改进方案的有效性和优势。我还承担

了撰写论文和专利的工作，将我们的研究成果进行整理和总结，以便于与其他研究者进行交

流和分享。在完成任务方面，我取得了良好的进展。首先，通过对现有方案的深入研究和实

验验证，我们成功提出了优化目标检测知识蒸馏的方案，并证明其在效果上具备一定的优势

。其次，我们撰写了一篇论文，详细介绍了我们的研究成果和改进方案，目前该论文已被IC

CV国际顶级学术会议接收。同时，我还负责了专利申请的工作，以保护我们的创新成果。

在实习实践期间，本人践行社会主义核心价值观，具备爱国奉献、艰苦奋斗的精神，强烈的

社会责任感；融入企业文化，遵纪守法、爱岗敬业、勇于开拓、敢于担当，具有精益求精、

追求卓越的工匠精神，用科学严谨、求真务实、持之以恒、勇攀高峰的学习态度和专业的知

识技能帮助企业提出技术难题解决方案，推动行业发展中以及取得经济社会效益。产出的成

果丰富，既帮助自己更加牢靠地掌握了本领域的专业知识，又将成果融入到实际生产中，为

企业带来效益。特别是在工程师学院学到的专业基础知识，工程伦理等工程师专业课程，在

实际工业生产中解决复杂工程问题有非常大的帮助。
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（二）取得的业绩（代表作）【限填3项，须提交证明原件（包括发表的论文、出版的著作、专利

证书、获奖证书、科技项目立项文件或合同、企业证明等）供核实，并提供复印件一份】

1. 
公开成果代表作【论文发表、专利成果、软件著作权、标准规范与行业工法制定、著作编写、科技

成果获奖、学位论文等】

成果名称

成果类别 

[含论文、授权专利（含

发明专利申请）、软件著

作权、标准、工法、著作

、获奖、学位论文等]

发表时间/

授权或申

请时间等

刊物名称

/专利授权

或申请号等

本人

排名/

总人

数

备注

Bridging Cross-task 

Protocol 

Inconsistency for 

Distillation in Dense 

Object Detection

会议论文
2023年10

月01日

 

Internatio

nal 

Conference 

on 

Computer 

Vision

2/8

CCFA类论

文，共同

第一作者

基于任务自适应知识蒸

馏的目标检测方法
发明专利申请

2023年06

月12日

申请号：20

2310687684

.6

2/6
学生第一

作者

      

2.其他代表作【主持或参与的课题研究项目、科技成果应用转化推广、企业技术难题解决方案、自

主研发设计的产品或样机、技术报告、设计图纸、软课题研究报告、可行性研究报告、规划设计方

案、施工或调试报告、工程实验、技术培训教材、推动行业发展中发挥的作用及取得的经济社会效

益等】
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Abstract

Knowledge distillation (KD) has shown potential for
learning compact models in dense object detection. How-
ever, the commonly used softmax-based distillation ignores
the absolute classification scores for individual categories.
Thus, the optimum of the distillation loss does not neces-
sarily lead to the optimal student classification scores for
dense object detectors. This cross-task protocol inconsis-
tency is critical, especially for dense object detectors, since
the foreground categories are extremely imbalanced. To ad-
dress the issue of protocol differences between distillation
and classification, we propose a novel distillation method
with cross-task consistent protocols, tailored for the dense
object detection. For classification distillation, we address
the cross-task protocol inconsistency problem by formulat-
ing the classification logit maps in both teacher and stu-
dent models as multiple binary-classification maps and ap-
plying a binary-classification distillation loss to each map.
For localization distillation, we design an IoU-based Lo-
calization Distillation Loss that is free from specific net-
work structures and can be compared with existing local-
ization distillation losses. Our proposed method is sim-
ple but effective, and experimental results demonstrate its
superiority over existing methods. Code is available at
https://github.com/TinyTigerPan/BCKD.

1. Introduction
Recent progress in dense object detectors has yielded

significant performance improvements in the object detec-

*The first two authors contributed equally to this paper.
†Corresponding author.
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Figure 1. (a) In dense object detection, different samples exhibit
inter-sample differences in their classification score sums on vari-
ous positions on dense maps, which is significantly different from
those in image classification. (b) The cross-task protocol inconsis-
tency problem arises in dense object detection due to the mismatch
between Sigmoid protocol used in this task and Softmax proto-
col used in classification distillation. Specifically, when classifica-
tion distillation loss equals 0, inconsistencies emerge between the
scores of the student and teacher models in dense object detection.

tion task [25, 29, 18, 17, 33]. However, the high compu-
tational burden of existing detection methods poses a sig-
nificant challenge for deployment on resource-constrained
devices. To address this problem, knowledge distillation
(KD) [13, 5, 11, 35, 36, 4, 15, 22, 47, 6, 40] has emerged as
a promising approach to compress models. The KD frame-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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work involves training a smaller student model by leverag-
ing a larger and more capable teacher model, for enhancing
the student model’s generalization ability.

Knowledge distillation approaches can be roughly clas-
sified into two categories: feature-based distillation meth-
ods [27, 37, 23, 1, 23, 4, 36] and logit-based distilla-
tion methods [13, 43, 34, 47]. In object detection, exist-
ing knowledge distillation methods have focused primar-
ily on feature-based distillation due to the marginal per-
formance gain from original logit-based distillation tech-
niques [14, 32, 38]. However, it is worth exploring logit-
based methods as they are usually simpler to use and have
the potential to further improve performance when com-
bined with feature-based methods. LD [47] is a repre-
sentative logit-based distillation technique that transforms
bounding boxes into probability distributions to facilitate
localization distillation. However, classification distillation
in dense object detection remains a challenge.

In this work, we further investigate this problem. Fig-
ure 1 (a) demonstrates that dense object detection faces a se-
vere foreground-background imbalance problem when pre-
dicting classification scores on dense maps. Consequently,
dense object detectors typically use the Sigmoid protocol to
transfer classification logits to classification scores, which
results in the position-aware inter-sample difference: Sam-
ples closer to positive sample regions generate higher clas-
sification score sums across all categories, indicating inter-
sample differences. However, common classification dis-
tillation methods [13, 43, 34, 47] directly use the Softmax
protocol from image classification to transfer classification
logits to classification scores. The Softmax protocol nor-
malizes classification scores, ignoring the absolute clas-
sification scores for individual categories and eliminating
the inter-sample difference characteristic of classification
scores. Additionally, in distillation, classification scores for
each category are jointly optimized with inter-class depen-
dencies, while in dense object detection, they are individ-
ually optimized without such dependencies. These differ-
ences lead to the cross-task protocol inconsistency prob-
lem, as shown in Figure 1 (b): when the teacher scores
are equal to the student scores after Softmax, the classifica-
tion distillation loss is 0, indicating that the student scores
have achieved the optimal solution in the distillation loss.
However, after Sigmoid, the student scores still differ from
the teacher scores, showing lower score sums and incorrect
inter-class relationships.

In addition to classification, localization is another cru-
cial aspect of the object detection task. Although the lo-
calization distillation loss in LD [47] has demonstrated
effectiveness, it requires the use of a Discrete Position-
probability Prediction Head, such as the Generalized Focal
Loss Head [17], for accurately predicting the localization
probability distribution of each sample. Unfortunately, cur-

rent object detectors [25, 29, 18] commonly use a Continu-
ous Box-Offset Prediction Head, which means that the use
of LD [47] would require specific training of teacher models
to incorporate the Discrete Position-probability Prediction
Head. This constraint limits the applicability of LD [47].

To address these issues outlined above, this paper pro-
poses two novel distillation losses, Binary Classification
Distillation Loss and IoU-based Localization Distillation
Loss, tailored for classification and localization in dense
object detectors. For classification, we convert cross-task
inconsistent protocols into cross-task consistent protocols.
Specifically, we treat the classification logit maps used in
dense object detectors as K (i.e., the number of categories)
binary-classification maps. Then, we use the Sigmoid pro-
tocol to obtain scores and apply a binary cross entropy
loss to distill each binary-classification map from teacher
to student models, effectively solving the cross-task pro-
tocol inconsistency problem. For localization, we con-
vert the special-structure-dependent localization distilla-
tion loss into a special-structure-free localization distilla-
tion loss. Specifically, we directly compute the Intersection
over Unions (IoUs) between predicted bounding boxes gen-
erated by the teacher and student models and employ the
IoU loss to minimize the difference between the IoU values
and 1 (i.e., the maximal IoU). Our approach is evaluated
on widely used COCO [19] dataset, and our experimental
results demonstrate that our method outperforms existing
logit-based distillation methods and further boosts the ex-
isting feature-based distillation methods. Our contributions
are summarized as follows:

(i) We identify the cross-task protocol inconsistency
problem as the primary obstacle in utilizing original clas-
sification distillation techniques for dense object detection.
The proposed Binary Classification Distillation Loss greatly
enhances the performance gains obtained through classifi-
cation distillation in dense object detection. We show that
transferring semantic knowledge (i.e., classification) alone
can be effective in dense object detection, beyond common
views in previous work.

(ii) We propose the IoU-based Localization Distillation
Loss to distill the localization knowledge from teacher mod-
els to student models, which eliminates the need for specific
training of teacher models.

(iii) Our proposed method is simple but effective, as
demonstrated by our experiments. Besides, our method ex-
hibits flexibility in integrating with existing state-of-the-art
methods, resulting in a consistent performance increase.

2. Related Works

2.1. Object Detection

Object detection is a fundamental and challenging task in
computer vision, involving the classification and localiza-
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tion of objects within a given image. The literature on this
topic can be broadly classified into two categories: region-
based object detectors and dense object detectors. Region-
based object detectors, including Faster-RCNN [26], Cas-
cade R-CNN [3], and Fast R-CNN [10], utilize a Region
Proposal Network (RPN) to generate Regions of Interest
(RoIs), which are then refined through classification and re-
gression heads to produce the final detection. In contrast,
dense object detectors, such as YOLO [25], FCOS [29],
RetinaNet [18], and GFL [17], directly predict objects from
feature maps, offering advantages in terms of computa-
tional efficiency and ease of deployment when compared
to region-based object detectors.

Most dense object detectors generate predictions of vari-
ous sizes and proportions by utilizing dense proposals (such
as anchor [18] and point [29]) at all positions on the im-
age. Thus, they face the challenge of a severe imbalance
between positive and negative samples, which can lead to
poor performance. To address this, some works [20, 42]
have explored complex re-sampling schemes for hard ex-
ample mining. Besides, RetinaNet [18] uses the focal loss
to prioritize the training of difficult samples. Additionally,
different label assignment strategies, such as ATSS [41]
and OTA [9], have been proposed to further improve per-
formance. Through collective efforts, dense object detec-
tors have achieved high accuracy and fast inference times.
Recent research has also focused on improving the perfor-
mance of compact real-time models through model com-
pression techniques. For example, successful approaches
include RTMDet [21] and YOLOv7 [30].

2.2. Knowledge Distillation

Knowledge Distillation (KD) is a model compression
method that enables training of compact student models
with guidance from more powerful teacher models. First
introduced by Hinton et al. [13], KD has since been exten-
sively studied in subsequent works [27, 37, 1, 24, 28, 43, 16,
48, 49, 31, 7, 45, 44, 46]. In classification, KD methods are
typically classified into two categories: feature-based meth-
ods [27, 37, 23, 1] and logits-based methods [13, 43, 34].
Feature-based methods transfer knowledge by mimicking
intermediate features from a teacher’s hint layer, while
logits-based methods by mimicking the logit outputs from
the teacher’s classifier. In object detection, KD was initially
applied in [5], and many subsequent works have been pro-
posed [5, 11, 35, 36, 4, 15, 22, 47, 6, 40] to improve stu-
dent performance. Feature-based distillation remains the
mainstream approach. For example, FGD [35] separates
foreground and background and recovers missing infor-
mation by rebuilding relationships among different pixels.
PKD [4] relaxes constraints on the magnitude of features by
mimicking the Pearson Correlation Coefficient. MGD [36]
randomly masks some pixels of the student’s feature and

leverages a simple generative block to force it to imitate
the teacher’s feature. DIC [12] explores the classifier-to-
detector knowledge transfer. TLLM [50] explores “undistil-
lable classes”, focusing on scenarios where a significant dis-
parity exists between teacher and student. Regarding logit-
based distillation methods, LD [47] treats bounding box re-
gression as probability distribution estimation, and argues
that distilling localization knowledge is more effective than
semantic knowledge in dense object detection.

In previous works, logit-based distillation methods in
image classification are directly utilized to distill the se-
mantic knowledge from teacher models to student models,
and they commonly find that the semantic knowledge trans-
fer seldom works for dense object detection. In this work,
we argue that these approaches overlook the differences be-
tween object detection and image classification tasks, which
leads to insufficient performance gains. To address this is-
sue, we propose a novel classification distillation method
tailored for dense object detection in this paper.

3. Methodology

3.1. Overview

A dense object detector can be represented as the com-
bination of a feature extractor f(·) and a detection head
h(·). Given an input image I , the detector first extracts
features F=f(I), and then generates the final prediction
P=h(F ). The prediction P typically comprises classifi-
cation logits l ∈ Rn×K and localization offsets o ∈ Rn×4,
where n is the number of anchors or points in dense object
detection, and K is the number of foreground categories.
In existing knowledge distillation (KD) methods for dense
object detection, knowledge is transferred from a frozen
large teacher detector Tdet to a small student detector Sdet.
For feature-based methods, the distillation loss is defined
as Ldis = loss(Ft, Fs), where Ft and Fs indicate the fea-
tures of Tdet and Sdet, respectively. For logits-based meth-
ods, the distillation loss is defined as Ldis = loss(Pt, Ps),
where Pt and Ps indicate the predictions of Tdet and Sdet,
respectively, and loss denotes the distillation loss function.

In this work, we propose two distillation losses tailored
for classification and localization in dense object detection,
as illustrated in Figure 2. We observe the cross-task proto-
col inconsistency problem between dense object detection
and classification distillation loss, which impedes the ef-
fectiveness of the classification distillation in dense object
detection. To address this problem, we introduce a novel
Binary Classification Distillation Loss that converts the in-
consistent cross-task protocol distillation into the consistent
cross-task protocol distillation. Moreover, we find that ex-
isting localization distillation methods rely on the Discrete
Position-probability Prediction Head, such as the General-
ized Focal Loss Head [17], which requires specific training
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Figure 2. Distillation pipeline of our method. We leverage two novel distillation losses tailored for the object detection task. (i) Binary
Classification Distillation Loss Ldis

cls , which represents classification logit maps as multiple binary-classification maps and distills classi-
fication knowledge through a distillation loss similar to binary cross entropy. (ii) IoU-based Localization Distillation Loss Ldis

loc , which
transfers localization knowledge from teacher models to student models by computing the IoUs between predicted bounding boxes from
both models and using the IoU loss. Best viewed in color.

of teacher models. To overcome this limitation, we propose
a special structure-free IoU distillation loss that enables the
distillation of localization knowledge from teacher models
to student models.

3.2. Binary Classification Distillation Loss

Protocol in Dense Object Detectors: Dense object de-
tectors aim to predict the corresponding classification score
and bounding box for each sample point in dense maps
generated from the entire image. However, as the back-
ground pixels occupy a significant portion of the image,
foreground and background samples are severely imbal-
anced in dense object detectors. Specifically, during train-
ing, the majority of the samples are background samples.
When using the Softmax protocol for transferring classifi-
cation logits to classification scores, which assigns a sam-
ple to K+1 probabilities (where K is the number of fore-
ground categories and an additional probability indicates
the background), it may not be effective due to its ten-
dency to assign higher probabilities to the majority class,
i.e., the background. Consequently, dense object detec-
tors such as YOLO [25], FCOS [29], RetinaNet [18], and
GFL [17] commonly use the Sigmoid protocol for transfer-
ring classification logits to classification scores. By mod-
eling the multi-classification problem as multiple binary-
classification problems, this approach can more effectively
handle the foreground-background class imbalance issue.

Specifically, dense object detectors produce classifica-
tion maps of varying sizes, with a size of H×W×K, where
H , W and K represent the height, width and number of
classes, respectively. Existing methods assign labels to each
point on the classification map, with positive samples la-

beled as a one-hot tensor and negative samples labeled as a
fully-zero tensor. Let x be a sample, and l∈Rn×K denote
its classification logits. To obtain classification scores for
each point, existing methods use the Sigmoid protocol, i.e.,
p = ProtSig(l). We also have a label tensor y for x. There-
fore, we can compute the binary cross entropy loss between
the classification scores and labels:

Lcls(x) =

n∑
i=1

K∑
j=1

LCE(pi,j , yi,j), (1)

where LCE(pi,j , yi,j) is the binary cross entropy loss for
the i-th position and j-th class, defined as:

LCE(pi,j , yi,j) =

{
− log(pi,j) y.,j = 1,

− log(1− pi,j) y.,j = 0.
(2)

Protocol in Common Classification Distillation: Com-
mon classification distillation methods [14, 32, 38, 47] are
usually developed for the class-balanced scenario in image
classification. The Softmax protocol plays a crucial role
in establishing strong inter-class relationships, providing
strong discriminative ability for identifying different cate-
gories in image classification. Therefore, the Softmax pro-
tocol is typically used in classification distillation.

Specifically, for a sample x, let lt and ls denote the
classification logits from the teacher and student models,
respectively. Existing methods use the Softmax proto-
col to obtain classification scores, i.e., pt=ProtSmax(l

t)
and ps=ProtSmax(l

s). The classification distillation loss
is computed between pt and ps to encourage the student
model to mimic the output of the teacher model. Specifi-
cally, this loss is typically defined as the Kullback-Leibler
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(KL) divergence between teacher scores and student scores:

Lkl
cls(x) = Lkl(p

s, pt), (3)

where Lkl
cls(·) denotes the classification distillation loss, and

Lkl(·, ·) denotes the Kullback-Leibler (KL) divergence.
Analysis of Cross-task Protocol Inconsistency: Exist-

ing distillation methods [47] in object detection typically
apply the classification distillation loss used in image classi-
fication directly to dense object detection, leading to cross-
task protocol inconsistency. Specifically, we firstly present
the Softmax protocol and the Sigmoid protocol below:

ProtSmax(l
t) =

el
t∑K

i=1 e
lti
, P rotSig(l

t) =
1

1 + e−lt
,

(4)
where lt is the logits of the teacher model. When n is a
constant tensor with the same shape with lt and ls = lt + n
(ls is the logits of the student model), we have:

ProtSmax(l
s) =

el
t+n∑K

i=1 e
lti+n

=
el

t · en∑K
i=1(e

lti · en)

=
el

t∑K
i=1 e

lti
= ProtSmax(l

t).

(5)

Thus, the distillation loss is equal to zero, and there is
no further transfer of localization knowledge from the
teacher to the student model. However, ProtSig(ls) ̸=
ProtSig(lt), resulting in a significant gap between the clas-
sification scores of the teacher and student models during
inference. Typically, the scores obtained by the student
model are lower than those of the teacher model and may
have incorrect inter-class relationships. As a result, the stu-
dent model cannot inherit the correct prediction ability from
the teacher model.

Bridge Cross-task Protocol Inconsistency: To bridge
cross-task protocol inconsistency, we propose a straightfor-
ward but effective solution. Specifically, we treat classi-
fication logit maps as multiple binary-classification maps
during distillation. To achieve this, we compute pt

′
=

ProtSig(l
t) and ps′ = ProtSig(l

s), resulting in the binary-
classification scores pt′ and ps′ with a size of n ×K. The
classification distillation loss can then be calculated based
on these binary-classification scores:

LBCE(p
s
i,j

′, pti,j
′
) =

− ((1− pti,j
′
) · log(1− psi,j

′) + pti,j
′ · log(psi,j

′)),

Ldis
cls (x) =

n∑
i=1

K∑
j=1

LBCE(p
s
i,j

′, pti,j
′
),

(6)

where Ldis
cls (·) denotes the classification distillation loss, and

LBCE(·, ·) denotes the binary cross entropy loss, psi,j
′, psi,j

′

denotes the i-th position and j-th class of ps′, pt′, respec-
tively.

Besides, we propose a loss weighting strategy for mod-
els to focus on distilling important samples, inspired by the
Focal Loss [18]. Specifically, we compute the importance
weighting w of the sample x as follows:

w =
∣∣∣pt′ − ps′

∣∣∣ , (7)

where w ∈ Rn×K . Each element in w weighted to the
classification distillation loss of sample x. Thus, the classi-
fication distillation loss in this paper is formulated as:

Ldis
cls (x) =

n∑
i=1

K∑
j=1

wi,j · LBCE(p
s
i,j

′, pti,j
′
). (8)

3.3. IoU-based Localization Distillation Loss

In addition to classification, another crucial aspect of ob-
ject detection is localization. LD [47] transforms the bound-
ing box into a probability distribution to tackle the localiza-
tion distillation problem. In LD [47], a Discrete Position-
Probability Prediction Head, such as the Generalized Focal
Loss Head [17], is essential for precisely predicting the lo-
calization probability distribution of each sample. Regret-
tably, this type of head is not commonly employed in cur-
rent object detectors [25, 29, 18] due to their complexity, es-
pecially in inference, resulting in the need for specific train-
ing of teacher models. To address this issue, we propose an
innovative structure-free localization distillation loss, moti-
vated by the Interaction-over-Union (IoU) loss widely used
in dense object detectors, to replace the existing ones.

LD [47] discretizes the continuous regression range into
a uniform discrete variable [e1, e2, ..., en]T with n intervals.
To predict the n logits corresponding to each regression in-
terval of each edge e, denoted by zT and zS for the teacher
and student, respectively, a Discrete Position-Probability
Prediction Head (e.g., the Generalized Focal Loss Head) is
needed. The generalized Softmax function is then employed
to transform zT and zS into the probability distribution pT
and pS , respectively. Finally, the Kullback-Leibler Diver-
gence is used to minimize the distance between pT and pS .
Although effective, this approach requires the use of a spe-
cific head, namely the Generalized Focal Loss Head, to pre-
dict discrete logits for all possible positions of each edge.
Instead, these detectors typically predict continuous bound-
ing box offsets that are more convenient for obtaining the
predicted bounding box in inference. Therefore, the appli-
cability of LD [47] is limited.

In this work, our objective is to transfer localization
knowledge from teacher models to student models with-
out relying on complex transformations of bounding box
predictions. To achieve this, we leverage the most funda-
mental location relationship between two bounding boxes,
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Method Schedule mAP AP50 AP75 APS APM APL

GFocal-Res101(Teacher) 2x 44.9 63.1 49.0 28.0 49.1 57.2
GFocal-Res50(Student) 1x 40.1 58.2 43.1 23.3 44.4 52.5
LD [47] 1x 42.1(+2.0) 60.3(+2.1) 45.6(+2.5) 24.5(+1.2) 46.2(+1.8) 54.8(+2.3)
Ours 1x 43.2(+3.1) 61.6(+3.4) 46.9(+3.8) 25.7(+2.4) 47.3(+2.9) 55.9(+3.4)
LD [47] + Ours 1x 43.2(+3.1) 61.4(+3.2) 46.7(+3.6) 25.1(+1.8) 47.3(+2.9) 56.1(+3.6)

GFocal-Res101(Teacher) 2x 44.9 63.1 49.0 28.0 49.1 57.2
GFocal-Res34(Student) 1x 38.9 56.6 42.2 21.5 42.8 51.4
LD [47] 1x 41.0(+2.1) 58.6(+2.0) 44.6(+2.4) 23.2(+1.7) 45.0(+2.2) 54.2(+2.8)
Ours 1x 42.0(+3.1) 60.0(+3.4) 45.6(+3.4) 24.1(+2.6) 46.3(+3.5) 54.1(+2.7)
LD [47] + Ours 1x 42.3(+3.4) 60.2(+3.6) 46.0(+3.8) 24.4(+2.9) 46.4(+3.6) 54.8(+3.4)

GFocal-Res101(Teacher) 2x 44.9 63.1 49.0 28.0 49.1 57.2
GFocal-Res18(Student) 1x 35.8 53.1 38.2 18.9 38.9 47.9
LD [47] 1x 37.5(+1.7) 54.7(+1.6) 40.4(+2.2) 20.2(+1.3) 41.2(+2.3) 49.4(+1.5)
Ours 1x 38.6(+2.8) 56.4(+3.3) 41.7(+3.5) 21.4(+2.5) 42.0(+3.1) 50.0(+2.1)
LD [47] + Ours 1x 38.9(+3.1) 56.6(+3.5) 42.0(+3.8) 22.2(+3.3) 42.5(+3.6) 50.8(+2.9)

Table 1. Quantitative results of the proposed method and existing logits-based distillation methods for lightweight detectors. All results are
evaluated on MS COCO val2017. Boldface indicates the best results.

Intersection over Union (IoU), as the distillation target.
Specifically, we obtain localization maps from both the
teacher and student models, and for a given input sam-
ple x, we denote the corresponding localization predictions
from the teacher and student models in i-th position as oti
and osi , respectively. We then obtain the bounding box
for x by using the anchor position and localization predic-
tion, where Ai denotes the i-th anchor. The bounding box
for the teacher model and student model are obtained as
bti = Decoder(Ai, o

t
i) and bsi = Decoder(Ai, o

s
i ), respec-

tively. We compute the IoU between bti and bsi , denoted as
u′
i. In addition, we introduce a loss weighting strategy for

models to focus on distilling important samples in the above
section, which we also use for the localization distillation.
Therefore, the localization distillation loss can be computed
as:

Ldis
loc (x) =

n∑
i=1

max(w.,j) · (1− u′
i). (9)

The localization distillation loss is straightaway but compa-
rable to existing localization distillation losses.

3.4. Total Distillation Loss

In this work, we introduce two novel distillation losses,
namely Binary Classification Distillation Loss and IoU-
based Localization Distillation Loss, for improving the per-
formance of both classification and localization tasks. The
proposed classification distillation loss is specifically de-
signed for the classification task, whereas the IoU loss is
developed for the localization task. The combined distilla-
tion loss is formulated as follows:

Ldis
total(x) = α1 · Ldis

cls (x) + α2 · Ldis
loc (x), (10)

where α1 and α2 are two hyper-parameters, denoting the
loss weightings for the classification distillation loss and the
localization distillation loss, respectively.

4. Experimental and Results
4.1. Datasets and Evaluation Metrics

To verify the effectiveness of the proposed method, we
conducted experiments on the popular MS COCO dataset
[19], which contains about 118k images in the train set, 5k
in the val set, and 20k in the test-dev set spanning 80 cate-
gories. We choose the train set for training and the val set
for testing. We report the detection mean average precision
(mAP) as an evaluation metric, meanwhile under the differ-
ent thresholds (e.g. AP50) and scales (e.g. APS).

4.2. Main Results

In this paper, we rethink the limitations of the original
Knowledge Distillation (KD) approach in dense object de-
tection, and propose two novel distillation losses, namely
the Binary Classification Distillation Loss and the IoU-
based Localization Distillation Loss, to address the short-
comings of KD in the context of both classification (Cls)
and localization (Loc) in detectors. Our proposed approach
achieves notable performance improvements over the base-
line method, without any additional costs.

Our proposed approach yields notable object detection
performance improvements, as shown in Table 1. Specifi-
cally, we achieve mAP score improvements of +2.8, +3.1,
and +3.1 when using GFocal-Res18, GFocal-Res34, and
GFocal-Res50 as student models, respectively, significantly
outperforming the state-of-the-art method LD [47]. More-
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Method Schedule mAP AP50 AP75 APS APM APL

RetinaNet-ResX101(Teacher) 1x 41.0 60.9 43.9 23.9 45.2 54.0
RetinaNet-Res50(Student) 1x 36.5 55.4 39.1 20.4 40.3 48.1
Ours 1x 39.2(+2.7) 58.7(+3.3) 42.0(+2.9) 22.4(+2.0) 43.1(+2.8) 52.1(+4.0)
MGD [36] 1x 39.6(+3.1) 59.0(+3.6) 42.4(+3.3) 22.7(+2.3) 43.9(+3.6) 53.0(+4.9)
PKD [4] 1x 39.7(+3.2) 59.0(+3.6) 42.4(+3.3) 22.5(+2.1) 44.2(+3.9) 53.7(+5.6)
MGD [36] + Ours 1x 40.1(+3.6) 59.5(+4.1) 43.0(+3.9) 22.3(+1.9) 44.3(+4.0) 53.3(+5.2)
PKD [4] + Ours 1x 40.1(+3.6) 59.6(+4.2) 42.8(+3.7) 22.3(+1.9) 44.3(+4.0) 53.8(+5.7)

FCOS-Res101(Teacher) 2x 40.8 60.0 44.0 24.2 44.3 52.4
FCOS-Res50(Student) 1x 36.6 56.0 38.8 21.0 40.6 47.0
Ours 1x 39.2(+2.6) 58.8(+2.8) 42.0(+3.3) 22.7(+1.7) 43.2(+2.6) 50.3(+3.3)
MGD [36] 1x 39.6(+3.0) 59.0(+3.0) 42.3(+3.5) 23.1(+2.1) 43.7(+3.1) 51.1(+4.1)
PKD [4] 1x 39.9(+3.3) 59.3(+3.3) 42.6(+3.8) 22.9(+1.9) 44.3(+3.7) 51.4(+4.4)
MGD [36] + Ours 1x 40.0(+3.4) 59.3(+3.3) 42.9(+4.1) 23.4(+2.4) 44.1(+3.5) 51.1(+4.1)
PKD [4] + Ours 1x 40.2(+3.6) 59.5(+3.5) 43.0(+4.2) 23.7(+2.7) 44.5(+3.9) 51.4(+4.4)

Table 2. Quantitative results of the proposed method combined with existing feature-based methods on different dense object detectors. All
results are evaluated on MS COCO val2017. Boldface indicates the best results.

over, we achieve further mAP score improvements of +0.3
when combining LD [47] with our proposed method in
GFocal-Res18 and GFocal-Res34.

Feature-based distillation methods such as MGD [36]
and PKD [4] have shown powerful performance improve-
ments. Fortunately, our method can be easily combined
with these approaches to further enhance detector perfor-
mance. As illustrated in Table 2, our method achieves mAP
score improvements of +0.4 and +0.5 over PKD and MGD,
respectively, when using RetinaNet as the basic dense ob-
ject detector. Moreover, our proposed method is highly flex-
ible and can be used with various dense object detectors. In
the case of FCOS, our approach leads to significant perfor-
mance improvements. Similar to the results with RetinaNet,
our method yields mAP score improvements of +0.3 and
+0.4 over PKD and MGD, respectively.

4.3. Ablation Analysis

Sensitivity Study of Different Losses. To demonstrate the
effectiveness of our proposed Binary Classification Distil-
lation Loss (Ldis

cls (x)) and IoU-based Localization Distilla-
tion Loss (Ldis

loc (x)), we conduct experiments on the GFo-
cal student model. As shown in Table 3, both Ldis

cls (x) and
Ldis
loc (x) contribute to improved detector performance, par-

ticularly in AP50 and AP75, which more impacts classifi-
cation and localization performance, respectively. Further-
more, the combination of the two losses leads to significant
performance improvements compared to the baseline.

Sensitivity Study of Different Hyper-parameters. Our
proposed method employs two hyper-parameters, α1 and
α2, to balance the Binary Classification Distillation Loss
and IoU-based Localization Distillation Loss. As shown in
Table 4 and Table 5, the experiments demonstrate that our

Method GFocal Res101-Res50

Cls Loc mAP AP50 AP75

Baseline 40.1 58.2 43.1

LD [47]
✓ 40.4 58.9 43.4

✓ 41.8 59.5 45.4
✓ ✓ 42.1 60.3 45.6

Ours
✓ 42.0 60.9 45.6

✓ 42.3 60.0 45.9
✓ ✓ 43.2 61.6 46.9

Table 3. Ablation study of distillation losses on different branch in
detectors. Cls and Loc indicates distillation on classification and
localization in detector head, respectively. which are represented
as Ldis

cls (x) and Ldis
loc (x) in our proposed method. Boldface indi-

cates the best results.

method is insensitive to the hyper-parameters and various
values of α1 and α2 can lead to similar significant improve-
ments in performance. Besides, we can achieve the best
quantitative results when setting α1 = 1.0 and α2 = 4.0.

Visualization. In order to demonstrate the effectiveness
of our proposed method in reducing classification errors,
we compared the performance of the teacher detector and
the student detector by forwarding the same image to both
and recording the L1 error of summation of the classifica-
tion score after Sigmoid. Figure 3 shows that our proposed
method significantly reduces the ambiguity in classifying
teachers and students in almost all locations at all FPN lev-
els, thus validating the effectiveness of our method.

Self-KD. We have demonstrated the effectiveness of our
proposed method for knowledge transfer from a strong
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w/o distill
AP 40.1

LD
AP 42.1

Ours
AP 43.2

FPN 0 FPN 1 FPN 2 FPN 3 FPN 4

Figure 3. Visualization of L1 error summation of the classification score after Sigmoid between the teacher (GFocal-Res101) and the student
(GFocal-Res50) at different levels of the Feature Pyramid Network (FPN). We can observe that our proposed method achieves a significant
reduction in errors for almost all locations compared to the state-of-the-art method LD [47]. To better observe subtle differences, we bound
the margin of error between 0 and 0.4. Darker is better. Best viewed in color.

α1 0 0.25 0.5 1.0 1.5 2.0 3.0

mAP 40.1 41.5 41.9 42.0 41.9 41.5 41.2
AP50 58.2 60.1 60.8 60.9 60.6 60.6 60.2
AP75 43.1 44.9 45.4 45.6 45.4 44.7 44.5

Table 4. Ablation study of hyper-parameter α1 on GFocal Res101-
Res50. To show the sensitivity of Ldis

cls (x), we fix α2 = 0. Bold-
face indicates the best results.

α2 0 0.5 1.0 1.5 2.0 4.0 5.0

mAP 40.1 41.3 41.6 41.8 42.2 42.3 42.1
AP50 58.2 59.4 59.5 59.8 60.1 60.0 59.8
AP75 43.1 44.7 44.9 45.4 45.9 45.9 45.8

Table 5. Ablation study of hyper-parameter α2 on GFocal Res101-
Res50. To show the sensitivity of Ldis

loc (x), we fix α1 = 0. Bold-
face indicates the best results.

teacher to a compact student in Table 1. However, in cases
where a stronger teacher is not available, self-KD [8, 39]
can still be employed for classification tasks. We apply
Sdet = Tdet to the dense object detection task with our
method, where Sdet is the student detector and Tdet is the
teacher detector. Table 6 shows that our proposed method
can still yield performance gains under the self-KD strategy.

Error Analysis. The TIDE toolbox [2] is used to analyze
the distribution of error types, as presented in Figure 4. The
Cls error type indicated correctly localized but misclassi-
fied predictions, and the Loc error type indicated correctly
classified but incorrectly localized predictions. The results
showed two key findings: (i) The Binary Classification Dis-
tillation Loss effectively reduced Cls errors but did not con-
tribute to reducing Loc errors. (ii) The IoU-based Local-

Method Self-KD mAP AP50 AP75

GFocal-Res50 40.1 58.2 43.1
✓ 40.9 59.1 44.2

GFocal-Res34 38.9 56.6 42.2
✓ 39.4 57.2 42.6

GFocal-Res18 35.8 53.1 38.2
✓ 36.2 53.5 38.9

Table 6. Quantitative results of proposed method under the self-
KD strategy. Boldface indicates the best results.
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2.70%
2.75%
2.80%
2.85%
2.90%
2.95%
3.00%
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Baseline BCDL ILDL BCDL+ILDL
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Different Methods

Cls Error Type

6.05%

6.19%
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5.40%
5.50%
5.60%
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6.00%
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6.20%
6.30%

Baseline BCDL ILDL BCDL+ILDL

dA
P

Different Methods

Loc Error Type

Figure 4. Error analysis conducted using the TIDE toolbox [2].
The decrease in average precision (dAP) resulting from two types
of errors (i.e., Cls, Loc) [2] is reported. The student model without
any distillation losses is denoted as “Baseline”, while the use of
Binary Classification Distillation Loss and the application of IoU-
based Localization Distillation Loss are denoted as “BCDL” and
“ILDL”, respectively.

ization Distillation Loss effectively reduced Loc errors but
did not contribute to reducing Cls errors. These results pro-
vide further evidence of the efficacy of Binary Classifica-
tion Distillation Loss and IoU-based Localization Distilla-
tion Loss in enhancing classification and localization per-
formance, respectively.
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5. Conclusion
Our study reveals the cross-task protocol inconsistency

is the reason behind the inefficiency of original classifica-
tion distillation in dense object detection. To solve this
problem, we present a novel Binary Classification Distil-
lation Loss. Besides, we design an IoU-based Localization
Distillation Loss for eliminating the need for specific struc-
ture. Experimental results demonstrate the effectiveness of
our proposed method, especially in improving classification
distillation performance. We expect that our work will pro-
vide valuable insights and encourage further research into
logit-based distillation methods.
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