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一、个人申报
（一）基本情况【围绕《浙江工程师学院（浙江大学工程师学院）工程类专业学位研究生工

程师职称评审参考指标》，结合该专业类别(领域)工程师职称评审相关标准，举例说明】

1.对本专业基础理论知识和专业技术知识掌握情况

我通过参与项目研究，系统地学习了计算机视觉、图像处理、深度学习等多个领域的知识和

技术。掌握了火焰检测、定位、跟踪、识别等功能的原理和方法，了解了消防巡检机器人的

设计和应用，拓宽了我的专业视野和知识面。我通过参与项目实施，锻炼了自己的动手能力

和创新能力，掌握了MMdetection框架、Python语言、OpenCV库等多种工具和平台的使用，

熟练了数据采集、预处理、分析等多个环节的操作。

2.工程实践的经历

经过前期调研，市场上大多数消防巡检机器人停留在遥控式消防机器人阶段，国内研制的搭

载的相机等视频采集设备消防机器人，仅用于将前线作业环境图像信息无线传输到火场后端

，辅助消防人员遥控操作，这种被动获取视觉信息方式因为无法保证环境信息的实时性，经

常导致火灾难以及时得到扑灭。目前，针对早期火焰的预警、探测、自主扑灭一体的消防巡

检机器人研究仍处在初步阶段。针对消防巡检机器人的火焰自主定位的研究较少。经过充分

查找早期火焰的识别与定位的文献后。我们考虑采用基于相机视觉的方法，实现火焰探测。

因为基于传统点传感器的方法存在早期火焰识别难、延迟率高、服务范围有限等问题。而由

于光速非常高，摄像机可以在可忽略的时间内捕捉火焰信息，能够克服基于点传感器的火焰

检测系统的大部分问题。在相机选型方面由于火焰具有明显的红外热辐射特性，我们首选红

外相机，但是考虑到红外相机拍摄的图像成像细节较少，易受温度影响等问题。为了实现高

准确度的火焰检测与定位。我们最终采用由一个可见光相机和一个红外相机结合的双目相机

来实现火焰检测与定位。具体方案为：设计一种火焰检测模型，通过可见光相机和红外相机

采集火焰数据，训练火焰检测模型，使模型具有良好的火焰检测性能。我们在灭火实验室采

集火焰从早期火苗到燃烧殆尽整个火焰燃烧周期中的图片，通过改变燃烧物影响火焰，构造

了丰富多样的火焰形态、大小、颜色。通过添加不同的干扰源，改变环境光等方法，采集多

样化的火焰数据。对如何融合异源火焰特征的问题，我与工程师们针对图像层融合、特征层

融合、决策层融合进行多次讨论，考虑到硬件搭载，我们最终采用基于决策层融合的方式。

在火焰定位的问题上，我们通过改进同源双目定位方案实现了基于近红外相机与可见光相机

的异源双目火焰定位。

3.在实际工作中综合运用所学知识解决复杂工程问题的案例

针对当前火焰公开数据集数量欠缺、多样性低、质量不高等问题，我们构建了一个多模态火

焰数据集。该数据集融合了多种模态图像，包括从公开数据集中收集的可见光图像，以及在

灭火实验室中采集的可见光和热红外图像。通过对数据集进行了数据增强，包括直方图均衡

化、Retinex彩色恢复算法、伽马自适应亮度校正算法、图像平滑滤波和Top-

hat变换等，以提高数据的质量和多样性。这为后续火焰检测技术的研究提供了坚实的数据

基础。针对当前单模态图像火焰识别方法存在误报率高等问题，我们分别提出了基于可见光

图像和热红外图像深度学习目标检测网络。首先，针对可见光图像火焰检测中背景干扰、小

目标火焰漏检等难点，提出采用切片辅助超推理技术以提高小目标火焰的检测召回率。同时

，设计了一种具有多尺度特征提取能力的级联掩码卷积神经网络ConvNeXt Cascade Mask R-

CNN（CCMR）。该网络结构利用多尺度特征提取和融合技术，以及多级目标检测结构，实现

对火焰目标的精确检测和分割。然后，针对热红外图像像素低、全局特征不明显等难点，改

进了CCMR特征融合模块，提出了一种热红外图像火焰检测网络ConvNeXt Cascade Mask R-

CNN PAFPN（CCMR-

PA）。该网络在CCMR基础上利用了PAFPN路径聚合特征金字塔，该特征金字塔能够有效地提

取热红外图像中火焰目标的温度特征，并增强不同尺度特征之间的信息传递和融合。针对单
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模态图像火焰目标检测的不足，我们提出了一种在决策层融合单模态目标检测模型检测信息

的多模态图像融合火焰检测方法。通过计算每种模态检测结果的置信度，以及不同模态目标

候选框之间的Generalized Intersection over Union 

（GIoU）值，根据置信度、GIoU值对检测结果进行最终判断，以降低误报率。该方法还考虑

到不同模态之间的互补性和差异性，对不同模态之间存在冲突或不一致的情况进行处理，能

够有效地利用可见光和热红外两种模态的检测结果，提高火焰检测的准确性和鲁棒性。针对

当前单模态双目相机火焰定位易受环境光干扰问题，我们提出了一种基于可见光相机与近红

外相机的异源双目火焰定位方法。首先，使用异源双目相机标定方法对可见光相机和近红外

相机进行内外参数标定；然后，使用双目立体校正方法对可见光图像和近红外图像进行几何

校正，并使用异源视差匹配与计算方法对校正后的图像进行视差计算；最后，根据视差信息

和相机参数计算出火焰目标在三维空间中的位置。该方法有效解决了可见光图像与红外图像

之间匹配困难，视差计算复杂等问题，实现对火焰目标的精确定位。
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（二）取得的业绩（代表作）【限填3项，须提交证明原件（包括发表的论文、出版的著作、专利

证书、获奖证书、科技项目立项文件或合同、企业证明等）供核实，并提供复印件一份】

1. 
公开成果代表作【论文发表、专利成果、软件著作权、标准规范与行业工法制定、著作编写、科技

成果获奖、学位论文等】

成果名称

成果类别 

[含论文、授权专利（含

发明专利申请）、软件著

作权、标准、工法、著作

、获奖、学位论文等]

发表时间/

授权或申

请时间等

刊物名称

/专利授权

或申请号等

本人

排名/

总人

数

备注

A Flame Localization 

Method Combing 

Visible-Light and 

Near-Infrared Cameras

会议论文
2023年09

月23日

2023 6th 

Internatio

nal 

Conference 

on 

Intelligen

t 

Autonomous 

Systems

1/6  

第四届中国研究生机器

人创新设计大赛三等奖
获奖

2022年08

月26日
 2/3  

      

2.其他代表作【主持或参与的课题研究项目、科技成果应用转化推广、企业技术难题解决方案、自

主研发设计的产品或样机、技术报告、设计图纸、软课题研究报告、可行性研究报告、规划设计方

案、施工或调试报告、工程实验、技术培训教材、推动行业发展中发挥的作用及取得的经济社会效

益等】

 



C-=.) tE~WHaJil~ .. ~~~~iJll~lil~'lll~Xffl~ffi~ 
'Jt=1 /JxlSE -t:eF:m. 1;, ::E ..:-9{ F3 ~ iJU¥ ~ 5HJ ~ B\J f :I:~ m ~j : 83 :5t 

~ Jt ~ filx iJI I ~ff- s~- f§J ll ~ 
~itstf§J : l. 2 ~ C ~3j(lif:ll ~...t) tJ-tl,5L (Jllf - if ll ~...t. ~tJm~j ; 88 71'- C ~3j(80:5t& ~...t) 

I 1t~J35 B\J7G1t~3j() 

*A~lt 
~A~~= *A~~m~••~~-~~~,~~•@, ~~m-w•ff 

' ~JJt~~ ! 

$11iA~~: j \ \i_,~ 

6 







6th International Conference on Intelligent Autonomous Systems 

ICoIAS’2023 

 1 / 3 
 

Acceptance Notification and Invitation Letter 

6th International Conference on Intelligent Autonomous Systems 

ICoIAS’ 2023 

Qinhuangdao, China 

Sept. 22-24, 2023 

www.ICIAS.org 

Yuanhao Liu, Zhifan Gong, Denghu Zhu, Qiao Deng, Songyu Hu, Jianzhong Fu 

Zhejiang University, China;  

3 4 Cohen Think Tank Fire (Zhejiang) Company Haining, China 

Email: liuyuanhao@zju.edu.cn; fancarr@zju.edu.cn; zjtt0163@163.com; dengqiao13@126.com; 

syhu166@zju.edu.cn; fjz@zju.edu.cn; 

 

Dear Yuanhao Liu, Zhifan Gong, Denghu Zhu, Qiao Deng, Songyu Hu and Jianzhong Fu, 

 

We are pleased to inform you that, after the double-blind peer review (please refer to the 

attached files), your manuscript, as identified below, has been accepted for publication and oral 

presentation at the 6th International Conference on Intelligent Autonomous Systems (ICoIAS’ 

2023), going to be held in Qinhuangdao, China during September 22-24, 2023. 

Paper ID: AS23-526 

Paper Title: A Flame Localization Method Combing Visible-Light and Near-Infrared 

Cameras 

Do prepare the camera ready manuscript in IEEE format (double column), by incorporating the 

suggestions/modifications as recommended by the reviewers; simultaneously do complete the 

registration formalities within the time frame as specified. As per the IEEE Convention, pls. do 

NOT add any title or Designation (Prof./Dr/Mr/Ms/Smt/Research Scholar/Director/ 

Head-of-the-Department etc.) before/after the name of the authors in the camera ready 

manuscript. 

As you are aware, all the accepted papers sent on time, duly registered and presented in the 

conference will be published in the ICoIAS’ 2023 conference Proceedings (which will be archived 

in the IEEE Xplore, and indexed by Ei Compendex, Scopus). 

We received an overwhelming response to the CFP for ICoIAS’ 2023 & were able to accept only a 

small fraction of the entire set due to rigorous reviewing procedure and other constraints. On 

http://www.icias.org/index.html


A Flame Localization Method Combing Visible-
Light and Near-Infrared Cameras 

Yuanhao Liu  
Polytechnic Institute 
Zhejiang University 
Hangzhou, China 

liuyuanhao@zju.edu.cn 
 

Zhifan Gong 
Polytechnic Institute 
Zhejiang University 
Hangzhou, China 

fancarr@zju.edu.cn 
                                                

Denghu Zhu 
Cohen Think Tank Fire 

(Zhejiang) Company 
Haining, China 

zjtt0163@163.com 
                                                 

Qiao Deng 
Cohen Think Tank Fire 

(Zhejiang) Company 
Haining, China 

dengqiao13@126.com

 

 

 

Songyu Hu* 
The State Key Laboratory of 

Fluid Power and Mechatronic 
Systems, College of Mechanical 

Engineering 
Zhejiang University 
Hangzhou, China 

syhu166@zju.edu.cn  

Jianzhong Fu 
Key Laboratory of 3D Printing 

Process and Equipment of 
Zhejiang Province, College of 

Mechanical Engineering 
Zhejiang University 
Hangzhou, China 
fjz@zju.edu.cn 

 
 
 
 
 

Abstract— As common natural disasters, fire incidents seriously 
threaten human life and property. Flame target localization is a key 
step to enabling timely detection and effective control of the fire 
incident. In this study, a novel approach that combines visible-light 
and near-infrared cameras in a heterogeneous binocular camera 
system is proposed. High-precision localization of early small-scale 
fire targets is achieved through calibration of the heterogeneous 
binocular camera, stereo rectification, heterogeneous disparity 
matching, and depth computation. Experimental tests were 
conducted within a range of 1–5 meters, validating the effectiveness 
of the proposed algorithm.  

Keywords—fire incidents; flame target localization; visible-
infrared; binocular stereo vision 

I. INTRODUCTION  
Fire incidents pose a continuous hazard in daily life. With 

advanced robotics technology and firefighting techniques, 
autonomous robots equipped with mobile chassis and 
firefighting equipment have been gradually applied in practical 
scenarios. These robots are capable of automatically detecting 
flames and performing automatic firefighting. Figure 1 
illustrates an autonomous firefighting robot developed by our 
team. Automatic flame localization is a crucial step in the 
operation of such robots. 

Extensive research has been conducted on flame detection 
and localization. Li et al. [1] and Sun et al. [2] employed full-
spectrum cameras to detect flame potential fields based on 
temperature information. Other scholars have utilized single 
RGB cameras and deep-learning neural network methods to 
detect flames using flame images [3–10]. Sousa et al. [11] 
detected flames using a thermal imager combined with image 
processing algorithms. Sun et al. [12] captured images of fire 
scenes using an infrared camera to detect suspected flames. 
These methods utilize single-camera images for flame detection 
without accurately obtaining the three-dimensional spatial 
position of the flames. 

 
Fig. 1. Autonomous firefighting robot 

Compared with monocular vision, binocular vision offers 
higher precision in three-dimensional position detection and 
stronger robustness, making it more suitable for object 
localization and tracking in various environments and scenarios 
[13]. Jia et al. [14] proposed an edge-based adaptive window 
algorithm that accumulates adaptive weights based on rows and 
columns for non-edge regions in binocular visible light camera 
images. The flame position is determined based on the disparity 
map. Chaoxia et al. [15] designed a firefighting robot that 
utilizes binocular visible light cameras and proposed a flame 
detection method designed specifically for weakly aligned 
images. A method based on Faster R-CNN is used to detect 
flames in keyframes of a localized video stream. Sun et al. [16] 
presented a 3D infrared imaging system based on binocular 
stereo vision. This system uses two visible light cameras to 
acquire 3D surface measurements of objects and integrates the 
surface temperature information obtained from the infrared 
camera with 3D measurement data. These binocular vision 
localization techniques are based on two visible light cameras. 
The feature point matching of the fire points are achieved 
through homogenous image matching. 

The combination of visible light and infrared cameras has 
become a common setup for flame detection because of the 



significant infrared radiation emitted by flames [17]. Therefore, 
research on integrating visible light and infrared cameras for 
flame localization has significant practical significance. He et al. 
[18] investigated the detection and localization of wildfires on 
transmission lines using a combination of visible light and 
infrared thermographic cameras. Significant variations in the 
grayscale field of captured photos can be observed due to the 
differences in imaging mechanisms between visible light and 
infrared thermographic cameras, making the flame depth 
calculation challenging. Moreover, images captured by infrared 
thermographic cameras have fewer imaging details, are sensitive 
to temperature variations, and are costly [19]. Consequently, in 
recent years, researchers have begun exploring the combination 
of visible light cameras and near-infrared cameras for flame 
detection [20]. 

Figures 2, 3, and 4 illustrate images of a typical flame target 
captured by an infrared thermographic camera, a near-infrared 
camera, and a visible light camera, respectively. By comparing 
the near-infrared image with the infrared thermographic image, 
it can be observed that the near-infrared image better preserves 
the fine details and textures of the flame. A comparison of the 
near-infrared image with the human visual system (HVS) or 
RGB image shows that the near-infrared camera retains the 
significant infrared radiation characteristics of the flame. To 
address the issues above, this paper proposes a heterogeneous 
binocular camera-based flame localization method that 
combines a visible light camera and a near-infrared camera. The 
method involves several steps, including heterogeneous 
binocular camera calibration, stereo rectification, heterogeneous 
disparity matching, and depth information computation, 
ultimately achieving precise flame localization.

 

Fig. 2. Thermal infrared (TIR) sensors image        Fig. 3. Near-infrared camera image  Fig. 4. Visible light camera image 

II. METHODS 
The proposed method consists of four main steps: 

heterogeneous binocular camera calibration, stereo rectification, 
heterogeneous disparity matching, and depth information 
computation. 

A. Heterogeneous Binocular Camera Calibration 
Accurately obtaining the intrinsic and extrinsic parameters 

of the cameras is crucial for binocular stereo ranging. In 
practical applications, camera calibration is typically required to 
acquire these parameters. Both visible light and infrared cameras 
can capture clear corner points on the calibration pattern. 
Zhang’s calibration method [21] is employed in this study. 
Zhang’s calibration method is based on a two-dimensional 
planar target. It involves capturing images of the planar target, 
such as a chessboard pattern, from different angles and then 
performing calculations and analysis on the corner points of the 
target to achieve camera calibration. 

B. Stereo Rectification  
Binocular vision positioning technology is based on the ideal 

situation where the imaging planes of two cameras are coplanar, 
their optical axes are parallel, and their focal lengths are the 
same. However, ensuring that the camera imaging planes are 
coplanar can be difficult in practice. Therefore, performing 
stereo calibration on the imaging of the two cameras is necessary 
to align the imaging planes of the left and right cameras on the 
horizontal line and have the same viewpoint. In this way, the 
three-dimensional information of the scene can be restored by 
calculating the disparity value between the left and right images. 

This paper adopts Bouguet’s stereo calibration algorithm 
[22], as shown in Figure 5. By using the rotation and translation 

matrices between the left and right camera coordinate systems, 
the two image planes are calibrated into strictly row-aligned 
planes. This step ensures that the number of reprojections of the 
two images is minimized and the observation area maximized. 
The specific calculation method is as follows: 

First, determine the rotation matrix and translation vector 
between the left and right camera coordinate systems through 
Zhang’s calibration method mentioned above; then, bring the 
rotation matrix and translation vector into Bouguet’s stereo 
calibration algorithm to calculate the calibration rotation matrix. 
Finally, the calculated calibration rotation matrix is used to 
perform stereo calibration on the left and right images. 
Specifically, the pixel coordinate systems of the left and right 
images must be converted into camera coordinate systems 
through a common intrinsic matrix. Each of the two camera 
coordinate systems needs to be rotated to obtain a new camera 
coordinate system. Then,  distortion correction and interpolation 
operations should be performed. 

 
Fig. 5. Schematic diagram of stereo correction 

This work was supported by the Key Research and Development Plan of 
Zhejiang Province [Grant No. 2022C01015], and the Fundamental Research 
Funds for the Central Universities [Grant No. 226-2023-00087]. 



C. Stereo Matching 
The purpose of stereo matching is to identify the 

corresponding point in the right image for each pixel in the left 
image, allowing for the calculation of disparity:  

  l rdisparity x x= −  (1) 

Where lx  and rx  represent the column coordinates of the 
two corresponding points in the images. 

This paper adopts the Semi-Global Block Matching (SGBM) 
algorithm [23] based on local feature points for stereo matching. 
This method greatly reduces computational complexity as 
compared with global methods. The algorithm consists of four 
steps: pre-processing, cost computation, cost aggregation, and 
post-processing, which are implemented to achieve the 
matching. 

1) Pre-processing:  First, the image is pre-processed using 
a horizontal Sobel operator following the method shown in the 
following equation: 

 

( ) ( ) ( )
( ) ( )
( ) ( )

Sobel , 2 1, 1,

1, 1 1, 1

1, 1 1, 1

x y P x y P x y
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+ + + − − +
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where the value of P  represents the pixel value of the image, 
x  and y  represent the pixel coordinates in the image. The 
mapping function for the pixel value NEWP  on the image is given 
by the following equation: 

0 ;
  ;

2*  ;
NEW

P PreFC
P P PreFC PreFC P PreFC

PreFC P PreFC

< −
= + − ≤ ≤
 ≥

 (3) 

where PreFC  represents the size of the mapping filter after 
horizontal Sobel pre-processing, with a default value of 15. 

2) Cost computation: The cost consists of two parts: 
calculating the BT cost using the gradient map of the pre-
processed image and calculating the BT cost using the original 
image without pre-processing. These two costs are added 
together. Finally, the obtained cost cube is summed within a 
rectangular window. The cost calculation formula is as follows: 

 ( ) ( )
( )
sobel

original

, 1* ,
2* ,

BT

BT

C p d lambda C p d
lambda C p d

=
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where ( ),C p d  is the cost of pixel p  with disparity d , 
1lambda  and 2lambda  are weighting factors, ( )sobel ,BTC p d  is 

the BT cost calculated from the pre-processed gradient map, and 
( )original ,BTC p d  is the BT cost calculated from the original image 

without preprocessing. 

3) Cost aggregation: The cost aggregation is recursively 
calculated according to the following formula: 
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where ( ),rL p d  represents the matching cost of point p  
along the  r path with disparity d . p r−  denotes the pixels 
located in front of P  along that path. 1P  and 2P  represent the 
smooth penalties for cases with small and large disparity 
differences between the pixel points and their neighboring 
points, respectively, with 1 2P P< . The cost ( ),C p d  can be 
either the BT cost or MI cost. The final aggregated cost is the 
sum of the aggregated costs along all paths, and its calculation 
formula is as follows: 

 ( ) ( ), ,r
r

S p d L p d= ∑  (6) 

4) Post-processing: The aggregated cost needs to undergo 
post-processing, which includes uniqueness checking, subpixel 
interpolation, left-right consistency check, and connected 
component noise filtering. 

D. Heterogeneous disparity matching 
The depth information is obtained by calculating the 

disparity using the disparity model. Figure 6 shows the image 
planes of the two cameras located precisely on the same plane. 
The optical axes are strictly parallel, at a fixed distance, and have 
the same focal length, l rf f f= = . Additionally, the left 
principal point, lC , and the right principal point, rC , have the 
same pixel coordinates in the left and right images, given as 

( ) ( ), ,l rC u v C u v= . 

 
Fig. 6. Binocular vision camera model  

The imaging coordinates of point P  in the left and right 
images are denoted as ( ),l l lP u v  and ( ),r r rP u v , respectively, 
and can be represented as follows: 
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After a simple calculation, we obtain ( ), ,C C CP x y z  as 
shown below: 
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In the equation, f , B , lu , ru , lv , and rv  represent the 
focal length of both cameras, the baseline distance between the 
two cameras, and the column and row coordinates of point P  
in the left and right camera images, respectively. 

III. EXPERIMENTS 

In the experiments, the computer processor used was AMD 
Ryzen 5 5600U 2.3GHz, with 16GB DDR4 RAM, running on 
the Windows 11 operating system. The development 
environment consisted of Python 3.7 and OpenCV 4.7. The 
stereo camera platform used in this paper, as shown in Figure 7, 
consisted of a 400W pixel visible light camera and a 400W pixel 
near-infrared camera. 

 
Fig. 7. Visible light and near-infrared binocular camera platform 

A. Camera Parameter Acquisition and Stereo Rectification 
Experiment 
According to the heterogeneous binocular vision model of 

visible light and near-infrared designed in Section II, 20 sets of 
valid calibration board images were captured simultaneously. 
Figure 8 shows the typical calibration board images captured by 
the visible-light and near-infrared cameras, respectively. The 
internal and external parameters of each camera were obtained 
after calibration. The optimal rotation and translation matrices 
were iteratively calculated based on the external parameters of 
each image. After obtaining the camera’s internal and external 
parameters, stereo rectification was performed to obtain the 
reprojection matrix. The camera ’ s internal and external 
parameters and the reprojection matrix are shown in Table Ⅰ. 

 
Fig. 8. Near-infrared camera images (on the left) and visible light camera (on 

the right)

TABLE I.  STEREO CALIBRATION AND CALIBRATION PARAMETERS FOR BINOCULAR CAMERAS  

Calibration Parameters Near-infrared camera Visible light camera 

Intrinsic Parameters �
𝟓𝟓𝟓𝟓𝟓𝟓.𝟕𝟕𝟕𝟕 𝟎𝟎 𝟕𝟕𝟓𝟓𝟓𝟓.𝟓𝟓𝟕𝟕

𝟎𝟎  𝟓𝟓𝟓𝟓𝟓𝟓.𝟓𝟓𝟓𝟓 𝟓𝟓𝟐𝟐𝟐𝟐.𝟓𝟓𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟓𝟓

� �
𝟓𝟓𝟓𝟓𝟐𝟐.𝟓𝟓𝟏𝟏 𝟎𝟎 𝟕𝟕𝟓𝟓𝟕𝟕.𝟔𝟔𝟏𝟏

𝟎𝟎  𝟓𝟓𝟓𝟓𝟐𝟐.𝟓𝟓𝟕𝟕 𝟓𝟓𝟓𝟓𝟓𝟓.𝟔𝟔𝟕𝟕
𝟎𝟎 𝟎𝟎 𝟓𝟓

� 

Baseline Length (mm) 124.543119 

Reprojection Error 0.069068 0.073972 

Distortion Coefficient 
Matrix [−𝟎𝟎.𝟎𝟎𝟎𝟎𝟐𝟐𝟕𝟕  − 𝟎𝟎.𝟐𝟐𝟕𝟕𝟓𝟓𝟓𝟓  − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟐𝟐  − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟓𝟓  𝟕𝟕.𝟔𝟔𝟕𝟕𝟕𝟕𝟔𝟔 ] [−𝟎𝟎.𝟎𝟎𝟎𝟎𝟐𝟐𝟕𝟕  − 𝟎𝟎.𝟐𝟐𝟕𝟕𝟓𝟓𝟕𝟕  − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟐𝟐  − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟓𝟓  𝟕𝟕.𝟔𝟔𝟕𝟕𝟕𝟕𝟔𝟔 ] 

Rotation Matrix �
𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 −𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟕𝟕𝟏𝟏 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟐𝟐
𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟕𝟕𝟏𝟏  𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝟎𝟎.𝟎𝟎𝟎𝟎𝟓𝟓𝟐𝟐𝟓𝟓
−𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟐𝟐 −𝟎𝟎.𝟎𝟎𝟎𝟎𝟓𝟓𝟐𝟐𝟓𝟓 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

� 

Translation Matrix [−𝟓𝟓𝟓𝟓𝟕𝟕.𝟔𝟔𝟕𝟕𝟐𝟐𝟓𝟓𝟐𝟐    − 𝟎𝟎.𝟐𝟐𝟕𝟕𝟔𝟔𝟕𝟕𝟐𝟐    − 𝟓𝟓𝟐𝟐.𝟏𝟏𝟕𝟕𝟏𝟏𝟐𝟐𝟕𝟕]𝑻𝑻 

Reprojection Matrix �

𝟓𝟓 𝟎𝟎 𝟎𝟎 −𝟓𝟓𝟐𝟐𝟓𝟓.𝟓𝟓𝟓𝟓𝟔𝟔𝟏𝟏𝟓𝟓
𝟎𝟎 𝟓𝟓 𝟎𝟎 −𝟓𝟓𝟐𝟐𝟓𝟓.𝟕𝟕𝟓𝟓𝟕𝟕𝟕𝟕𝟓𝟓
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟓𝟓𝟕𝟕𝟎𝟎.𝟓𝟓𝟐𝟐𝟕𝟕𝟓𝟓𝟐𝟐
𝟎𝟎 𝟎𝟎 𝟎𝟎.𝟎𝟎𝟎𝟎𝟐𝟐𝟎𝟎𝟕𝟕 𝟎𝟎

� 



B. Flame Target Localization Experiment 
We used stereo matching to generate a disparity map after 

calibrating the images captured by the cameras. Figure 9 shows 
the flame targets captured by the left and right cameras, 
respectively. Figure 10 (a) shows the generated disparity map, 
and (b) shows the depth map calculated from the disparity map. 
The experimental results show the coordinate of the flame center 
is (253, 266), the center distance between the flame center and 
the center line of the binocular camera’s optical center is depth 
= 1518.989mm, and the error between the calculated and 
measured data is 18.989mm. 

The flame targets at different distances from the camera were 
tested to measure the ranging accuracy of this system, and the 
experimental results are shown in Table Ⅱ. Table Ⅱ shows the 
ranging error of the algorithm is within 7%, indicating a high 
measurement accuracy. Additionally, the measurement 
accuracy is highest at a distance of 3m because the camera in 
this study was calibrated at 3m, thereby obtaining higher 
accuracy in the camera’s internal and external parameters. 

 
Fig. 9. Flame targets captured by the left and right cameras 

 
Fig. 10. Disparity map and depth map.(a) is DisparityMap. (b) is Depth map 

TABLE II.  TEST DATA OF FIRE POINT LOCATION 

Actual 
distance/m 

Disparity pixel 
coordinates of the 

flame centroid 
Depth distance in 
millimeters/mm 

Percentage 
error/% 

1.0 (266,244) 993.624 6.4 

1.5 (256,254) 1493.243 0.4 

2.0 (248,245) 1990.991 0.4 

2.5 (245,241) 2470.131 1.2 

3.0 (232,240) 3003.454 0.1 

3.5 (233,239) 3633.045 3.8 

4.0 (239,240) 3802.935 4.9 

4.5 (239,242) 4479.729 0.4 

IV. CONCLUSION 
This paper proposes a flame target localization method based 

on near-infrared and visible light cameras. First, Zhang’s 
calibration method is used to obtain the camera’s intrinsic and 
extrinsic parameters. Then, the Bouguet stereo rectification 
algorithm is employed to obtain the camera rectification matrix. 
Finally, the SGBM algorithm is utilized for flame stereo 
matching to determine the two cameras’ disparity. The relative 
distance from the camera to the flame is calculated using the 
triangulation model. Experimental results demonstrate that the 
proposed method can accurately locate the flame source with a 
depth positioning error of ≤6.4% for small target flames within 
5m, exhibiting high measurement accuracy and meeting 
practical application requirements. Future research can focus on 
enhancing camera self-adaptive calibration based on the existing 
algorithm further to improve the algorithm’s measurement 
accuracy and robustness. 
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