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一、个人申报
（一）基本情况【围绕《浙江工程师学院（浙江大学工程师学院）工程类专业学位研究生工

程师职称评审参考指标》，结合该专业类别(领域)工程师职称评审相关标准，举例说明】

1.对本专业基础理论知识和专业技术知识掌握情况

本人本科期间就读于浙江大学能源工程学院机械设计制造及其自动化（汽车工程）专业，研

究生阶段就读于浙江大学工程师学院车辆工程及其智能化项目，专业为能源动力。在知识掌

握方面，具备较为扎实的数理基础，熟练掌握高等数学、工程图学、大学物理、理论力学、

工程流体力学、工程热力学、传热学、内燃机学、汽车理论、优化算法等专业基础理论知识

，英语水平通过CET-

6级考试。通过课程实践和工程实践，熟练掌握通过MATLAB/Simulink进行仿真建模、控制策

略和算法搭建，掌握C、C++、Python等常用计算机语言，掌握通过vector 

CANoe采集台架试验数据，在绘图上掌握autoCAD、Creo等工程实践中的常用软件。

2.工程实践的经历

工程实践方面，在重庆金康动力新能源有限公司进行了为期一年的校外专业实践项目，项目

名为“新能源增程式混合动力控制系统研究”，主要研究内容为基于 MATLAB/Simulink 

设计增程器控制器（RCU）控制策略，包含启停控制、增程器工作模式控制、增程器发电功

率解耦下发、增程器发电功率反馈控制。通过各模块单元测试，以及结合被控对象模型的模

型在环测试（MIL）验证增程器控制策略。在此过程中熟练掌握了基于MATLAB/Simulink进行

车辆动力系统部件建模及验证的流程与方法。根据发动机、发电机与 RCU 之间的 CAN 

通讯协议，明确控制策略模型的输入、输出接口，与 RCU 中间层软件接口保持一致，通过 

Simulink 自动代码生成将控制策略烧录到 RCU 

硬件，进一步通过硬件在环仿真（HIL）验证 RCU 

功能及控制策略。在此过程中掌握了CAN总线相关的理论知识，掌握了对定义CAN报文的bdc

文件的阅读能力，以及基于CANoe对CAN网络进行分析和数据采集的能力；同时通过对RCU中

间层软件接口的定义锻炼了C语言实践能力。

3.在实际工作中综合运用所学知识解决复杂工程问题的案例

问题简介：需要利用动态规划算法（DP）求解给定车辆行驶车速曲线下，增程式电动汽车的

最优能量管理策略。

问题难点：项目前期工作已实现通过DP求解未来5秒内最优车辆能量管理策略的算法，但目

前需要对总行驶时间为30-

60分钟的整个行程进行最优能量管理策略求解，保证求解速度是关键难点。

具体解决过程：①车辆动力系统建模对求解精度和求解速度非常关键。通过增程器、动力电

池、驱动电机等车辆动力总成主要部件的试验数据，构建了面向DP的动力系统简化静态模型

：原方案中，动力电池开路电压、等效内阻的确定方式，是提前通过多项式拟合方法，从试

验数据中获得开路电压、等效内阻关于动力电池荷电状态（SOC）的多项式计算公式。结合

从《数值计算方法》课程所学的知识，多项式计算公式虽然拟合精度较高，但计算过程中需

要多次乘法运算，总体计算效率不如离散点线性插值计算方法。于是将开路电压、等效内阻

的确定方法从多项式计算改为离散点线性插值计算，在离散点间隔较小的情况下，这种简化

造成的精度损失可以忽略不计。②在DP算法求解过程中，需要重复计算在特定状态点下执行

特定控制量后，将要转移到的下一个状态点的位置，即状态转移计算。根据DP算法的原理，

这样的计算一共会进行时间步数量×状态点数量×控制量数量次，然而所有状态点和控制量

的组合一共仅有状态点数量×控制量数量种，因此存在大量重复计算。观察到这一点后，我

选择预计算状态转移，提前将所有状态在所有控制量下的状态转移结果计算出来并保存在状

态点数量×控制量数量大小的矩阵内，将复杂的状态转移计算简化为查表，遵循工程实践中

常用的“以空间换时间”的思想，大大缩减了计算量。③在对原方案代码的阅读和反复试验
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的过程中，通过对MATLAB的深入学习，了解到通过MATLAB记录工程中每个函数的调用次数和

占用时间的方法，并由此发现原代码中较多使用了MATLAB的find()函数来实现在大矩阵中查

找并提取符合条件的元素，而计算这一函数所花费的时间占用了总求解时间的93.8%。通过

对MATLAB帮助文档的深入阅读和学习，认识到find()函数在大矩阵中使用时的严重弊端，并

使用逻辑索引的方式代替find()函数，将总求解时间缩短了约90%。④结合应用的具体场景

，对DP算法中的部分参数进行寻优，在保证精度的前提下缩短DP求解时间：考虑到本应用场

景中，DP求解的对象为总行驶时间为30-

60分钟的总体为高速公路行驶场景下的行程，利用行业内的标准测试循环，构建了高速公路

行驶场景下的测试循环，用于DP算法参数寻优。通过网格化搜索的方式，确定了最佳的状态

量离散程度。

问题解决结果：在同样的软硬件平台下进行测试，测试工况为行驶时间约3000秒的行程。使

用原算法对测试工况进行最优能量管理策略求解，求解花费时间将超过半个小时（1800秒）

。使用优化后的算法，求解精度损失在1%以内，求解所需时间仅为6.5秒。通过对车辆动力

系统适当的简化、对动态规划算法求解过程的优化、对MATLAB本身特性的细致研究和充分利

用，大大减少了算法求解所需时间，基本解决了问题难点。
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（二）取得的业绩（代表作）【限填3项，须提交证明原件（包括发表的论文、出版的著作、专利

证书、获奖证书、科技项目立项文件或合同、企业证明等）供核实，并提供复印件一份】

1. 
公开成果代表作【论文发表、专利成果、软件著作权、标准规范与行业工法制定、著作编写、科技

成果获奖、学位论文等】

成果名称

成果类别 

[含论文、授权专利（含

发明专利申请）、软件著

作权、标准、工法、著作

、获奖、学位论文等]

发表时间/

授权或申

请时间等

刊物名称

/专利授权

或申请号等

本人

排名/

总人

数

备注

基于动态规划的PHEV电

池参考SOC规划研究
其他公开正式刊物

2024年10

月28日
现代机械 1/1  

结合交通预测的PHEV电

池SOC参考轨迹规划研究
会议论文

2023年11

月12日

中国内燃机

学会2023交

通能源与智

能动力大会

1/3  

      

2.其他代表作【主持或参与的课题研究项目、科技成果应用转化推广、企业技术难题解决方案、自

主研发设计的产品或样机、技术报告、设计图纸、软课题研究报告、可行性研究报告、规划设计方

案、施工或调试报告、工程实验、技术培训教材、推动行业发展中发挥的作用及取得的经济社会效

益等】
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基于动态规划的 PHEV 电池参考 SOC 规划研究 
曾凡龙 

（浙江大学 动力机械及车辆工程研究所, 中国 杭州 310027） 

摘要：合理的动力电池荷电状态（SOC）参考轨迹规划对于提高插电式混合动力汽车（PHEV）能量管理策略的优化性能非

常重要。本研究提出了一种基于动态规划(DP)的参考 SOC 规划方法，从智慧交通系统（ITS）获取车辆未来经过不同路段时

的交通流速度，进而通过 DP 进行参考 SOC 规划。通过参数寻优以及求解过程优化，改善了 DP 的求解时间。将所提出的

SOC 规划算法与自适应等效燃油消耗最小化策略（A-ECMS）相结合，使用真实世界数据的仿真结果表明，基于 DP 的参考

SOC 规划方法相比电量维持的参考 SOC，节省了 4.63%的综合燃油消耗量。 

关键词：插电式混合动力汽车；能量管理策略；电池 SOC 参考轨迹；动态规划； 

中图分类号：U469.72 文献标识码：A 

Dynamic Programming-based PHEV Battery Reference SOC Planning 

Fanlong Zeng 

（Power Machinery and Vehicular Engineering Institute, Zhejiang University, Hangzhou, China, 310027） 

Abstract: Battery state-of-charge (SOC) reference trajectory planning is very important to improve the performance 

of the plug-in hybrid electric vehicle (PHEV) energy management strategy. This paper proposed a SOC reference 

trajectory planning method based on dynamic programming, which obtains the traffic flow speed data of different 

road sections that the vehicle will pass through in the future from the intelligent transportation system (ITS), and 

then uses the dynamic programming (DP) algorithm to perform reference SOC planning. Through parameter 

optimization and solution process optimization, the solution time of DP is improved. Combining the proposed SOC 

planning algorithm with the adaptive equivalent fuel consumption minimization strategy (A-ECMS), simulation 

results using real-world data show that the DP-based reference SOC planning method saves 4.63% comprehensive 

fuel consumption than the charge-sustaining SOC reference. 

Key words: Plug-in Hybrid Electric Vehicle; Energy Management Strategy; Reference SOC; Dynamic 

Programming 

 

1 引言 

能量管理策略（EMS）是插电式混合动力汽车

（PHEV）的关键技术之一，合理的 EMS 能够通过

对各动力源之间的能量分配，优化 PHEV 的动力性、

经济性、动力电池寿命和 NVH 性能等。目前，以等

效燃油消耗最小策略（ECMS）[1]和模型预测控制

（MPC）为代表的基于实时优化的 EMS 受到广泛

研究，由于 PHEV 的动力电池容量相对混合动力汽

车（HEV）更大，电池荷电状态（SOC）能够在更

大范围内变化，SOC 参考值的确定就成为基于实时

优化的 EMS 必须要考虑的问题，也即参考 SOC 规

划问题[2]。 

针对 PHEV 的 EMS 中的 SOC 参考轨迹规划问

题，国内外学者已开展了较多研究。智慧交通系统

（ITS）的发展使车辆提前获取更多行程信息成为可

能，Chao Sun 等[3]提出了结合实时交通速度数据的

参考 SOC 规划算法，利用实时交通信息组成长时车

速曲线，通过 DP 求解最优 SOC 参考轨迹，为下层

基于 MPC 的 EMS 提供 SOC 参考值。基于行程信

息的 SOC 参考轨迹规划能够充分利用实时交通信

息，提高 EMS 的效果，但存在 DP 计算复杂度高、

求解时间长等问题。 

针对上述问题，本文设计了一种基于动态规划

（DP）的 PHEV 电池参考 SOC 规划方法。通过 ITS

获得未来行驶路段的交通流速度，组成大致的未来

行驶车速曲线，通过 DP 算法求解车速曲线对应的

最优参考 SOC 轨迹。本文对 DP 的求解过程进行了

优化，在保证求解精度的前提下减少了求解所需时

间。最终通过仿真试验，将所规划的参考 SOC 用于

ECMS 能量管理策略，验证了所提出的基于 DP 的

参考 SOC 规划方法。 

Zeng
打字机
代表作一
论文全文



2 全局车速的获取 

美国加州高速公路性能评估系统（PeMS）通过

部署在加州主要高速公路上的交通探测器，记录高

速公路网各处的交通流量、交通速度等信息[4]，其

中各路段的宏观交通流速度等信息能够实时获取，

更新时间为 5 分钟。Mobile Century 数据集[5]通过移

动电话的 GPS 功能采集了 2008 年 2 月 8 日加州 I-

880高速公路段上的 1388条车辆的时空行驶轨迹数

据，该路段的示意图如图 1（a）所示，图 1（b）展

示了 PeMS 中该路段沿线交通探测器采集的宏观交

通流速度信息。 

 

图 1 Mobile Century 数据集采集区域及典型交通情况示意图 

假设 Mobile Century 中采集的对象车辆在出发

时通过 PeMS 准确获取到了后续路段的交通流速度

信息，假设车辆未来行驶速度等于所在路段的交通

流速度，通过三次埃尔米特插值，即可在出发时获

得车辆大致的未来行驶车速曲线，如图 2 所示。 

 

图 2 利用交通流速度得到未来行驶车速 

从 Mobile Century 数据集中提取 10 条行驶轨

迹，5 条一组拼接成两个较长的测试工况，用于对

参考 SOC 规划方法的优化和验证，如图 3 所示。 

 

图 3 从 Mobile Century 数据集中提取的测试循环 

3 基于动态规划的 SOC 规划 

3.1 面向动态规划的 PHEV动力系统简化模型 

为利用 DP 进行参考 SOC 规划，首先建立面向

DP 的动力系统简化模型，本文的 PHEV 研究对象

为某款增程式 SUV。 

DP 的输入为行程的全局车速，DP 求解的离散

时间步长为 1 秒。通过全局车速确定车辆每个时刻

的整车需求功率，进而利用 DP 求解各个动力源的

最佳能量分配。需求功率可由如下车辆纵向动力学

公式计算： 

𝑃req(𝑘) =
𝑣(𝑘)

3600𝜂T𝜂m
· 𝐹t(𝑘) (1) 

其中车辆行驶阻力𝐹t由下式计算： 

𝐹t(𝑘) = (𝑚g𝑓cos 𝛼 + 𝑚gsin 𝛼 +
𝐶𝐷𝐴𝑣(𝑘)2

21.15
+ 𝛿𝑚

𝑎(𝑘)

3.6
) (2) 

其中，𝑘为当前离散时刻，s；𝑣为车速，km/h；𝑎为

加速度，通过离散速度值做差分计算，m/s2；𝑚为

整车质量，kg；g 为重力加速度，m/s2；𝑓为滚动阻

力系数；𝛼为坡度，°；𝐶D为风阻系数；𝐴为迎风面积，

m2；𝛿为旋转质量换算系数；𝜂T为传动系统的效

率，%；𝜂m为驱动电机效率，%，通过驱动电机转

速和转矩查表获得。驱动电机转速𝑛Mot、转矩𝑇Mot

可通过车轮半径、传动系速比分别从车速和阻力矩

换算得到： 

𝑛Mot =
𝑣(𝑘)

3.6𝑟wheel
⋅

60

2𝜋
⋅ 𝑖0 (3) 

𝑇Mot =
𝑟wheel

𝜂T𝑖0
· 𝐹t(𝑘) (4) 

考虑整车的功率平衡，如图 4，忽略附件损耗，

整车需求功率由增程器发电功率𝑃RE和电池功率

𝑃batt提供。调整增程器工作点，可以改变𝑃RE的大小，

由电池提供其余的需求功率。 

 

图 4 增程式电动汽车整车功率平衡示意图 

于是动力系统的功率平衡如下式： 

𝑃req(𝑘) = 𝑃batt(𝑘) + 𝑃RE(𝑘) (5) 

将增程器视作整体，不考虑增程器内部发动机

与发电机的复杂动态过程，对增程器建立静态模型，

假定增程器响应迅速、发电功率稳定。增程器高效

发电运行曲线如图 5 所示，该运行曲线综合考虑了

发动机万有特性和发电机效率、避开了共振区域以

保证 NVH 性能，红色五角星标记的工作点是不同

发电功率下所选取的最优工作点。 

(a) (b)



 

图 5 增程器油耗 map 及最优工作曲线 

动力电池模型用一阶等效电路模型建模，其中

动力电池的电流𝐼batt可由下式求得： 

𝐼batt(𝑘) =
𝑈oc (𝑘) − √𝑈oc (𝑘)2 − 4000 ⋅ 𝑅batt (𝑘) ⋅ 𝑃batt (𝑘)

2𝑅batt (𝑘)
(6) 

其中𝑈oc 为动力电池开路电压，V；𝑅batt为动力电池

等效内阻，Ω。𝑈oc 和𝑅batt在 23℃恒温下随 SOC 的

变化关系通过电池芯充放电试验得到，如图 6 所示。 

 

图 6 动力电池不同 SOC 下的开路电压及等效内阻 

利用安时积分法估计电池 SOC 的变化率： 

𝑆𝑂𝐶̇ (𝑘) = −
𝐼batt(𝑘)

3600 ⋅ 𝑄b
(7) 

3.2 动态规划具体实现 

选择电池 SOC 作为状态量，增程器发电功率

𝑃RE作为控制量，增程器发电功率仅在图 5 中的有

限个工作点中选取。联立（6）和（7），可以得到 DP

的状态转移方程。以最小化能量损耗作为 DP 规划

参考 SOC 的优化目标；目标函数中还包含终点 SOC

约束项，以保证终点 SOC 到达目标 SOC。DP 单步

损失函数和全局优化目标函数如下： 

𝐿(𝑘, 𝑖, 𝑗) = (�̇�fuel(𝑗) ∙ 𝑄HV − 𝑃RE(𝑗)) + 𝐼batt
2 (𝑖) ∙ 𝑅batt(𝑖) (8) 

𝐽DP = min (∑ 𝐿(𝑘, 𝑖, 𝑗) +

𝑁

𝑘=1

𝛾 ∙ (𝑆𝑂𝐶end − 𝑆𝑂𝐶target)2) (9) 

其中𝑆𝑂𝐶end为终止时刻的 SOC 值；𝛾为终止 SOC 值

偏离的惩罚项系数；�̇�fuel(𝑗)为𝑘阶段𝑗控制量下的燃

油消耗质量流量，kg/s；𝑄HV为汽油燃烧热值，

46000kJ/kg。 

在 DP 进行多阶段决策优化的过程中，整车被

控对象的各个部件需要符合实际运行状态，因此需

要考虑根据实际情况对各动力部件的关键参数进行

如下约束： 

𝑆𝑂𝐶min ≤ 𝑆𝑂𝐶(𝑘) ≤ 𝑆𝑂𝐶max 

𝑃batt,chg(𝑆𝑂𝐶(𝑘)) ≤ 𝑃batt(𝑘) ≤ 𝑃batt,dischg(𝑆𝑂𝐶(𝑘)) 

𝐼batt,min(𝑆𝑂𝐶(𝑘)) ≤ 𝐼batt(𝑘) ≤ 𝐼batt,max(𝑆𝑂𝐶(𝑘))  

𝑃Mot,min ≤ 𝑃m(𝑘) ≤ 𝑃Mot,max 

𝑇Mot,min(𝑛Mot(𝑘)) ≤ 𝑇Mot(𝑘) ≤ 𝑇Mot,max(𝑛Mot(𝑘)) 

其中𝑆𝑂𝐶max和𝑆𝑂𝐶min分别是动力电池 SOC 的上下

限，%；𝑃batt,chg和𝑃batt,dischg分别是动力电池充放电

功率的限制值，kW；𝐼batt,max和𝐼batt,min分别是动力

电池充放电电流的上下限，A；𝑃Mot,max和𝑃Mot,min分

别是驱动电机功率的上下限，kW；𝑇Mot,max和

𝑇Mot,min分别是驱动电机扭矩的上下限，N·m；𝑛Mot

为驱动电机转速，r/min。其中电池充放电功率限制、

电池充放电电流限制均与 SOC 值相关，驱动电机的

最大扭矩与其转速相关。 

采用逆向求解的方式，根据以下迭代公式，从

最终阶段往前推算每个阶段𝑘、每个状态点𝑖的最优

子目标函数值𝐽∗(𝑘, 𝑖)： 

对于 𝑘 = 𝑁: 

𝐽∗(𝑘, 𝑖) = 𝐿SOC(𝑆𝑂𝐶(𝑖)) (10) 

对于 1 ≤ 𝑘 < 𝑁: 

𝐽∗(𝑘, 𝑖) = min
0<𝑗<𝑁a

(𝐽∗(𝑘 + 1, 𝑖𝑖) + 𝐿(𝑘, 𝑖, 𝑗)) (11) 

其中𝑖𝑖为第𝑘阶段第𝑖状态下采取第𝑗控制量时将

转移到的状态。对每个状态点，需要遍历其所有可

能的控制量，找出使得子目标函数最小，且下一状

态满足约束条件的最优控制量𝑃RE
∗ (𝑘, 𝑖)。由于状态

量的离散化，给定控制量时，转移后的下一状态往

往不能恰好落在网格点上，如图 7 所示。𝑆𝑂𝐶𝑘
𝑖代表

第𝑘阶段第𝑖个状态点，当采取控制量𝑢𝑗时，通过状

态转移方程计算出其转移到𝑆𝑂𝐶𝑘+1
𝑖𝑖 状态，此 SOC值

介于𝑆𝑂𝐶𝑘+1
𝑖1 和𝑆𝑂𝐶𝑘+1

𝑖2 这两个状态点之间。采用线性

插值的方式获得𝑆𝑂𝐶𝑘+1
𝑖𝑖 状态的子目标函数： 

𝐽1 = 𝐽∗(𝑘 + 1, 𝑆𝑂𝐶𝑘+1
𝑖1 ),  𝐽2 = 𝐽∗(𝑘 + 1, 𝑆𝑂𝐶𝑘+1

𝑖2 ) (12) 

𝐽∗(𝑘 + 1, 𝑆𝑂𝐶𝑘+1
𝑖𝑖 ) = 𝐽2 +

𝑆𝑂𝐶𝑘+1
𝑖𝑖 − 𝑆𝑂𝐶𝑘+1

𝑖2

𝛥𝑆𝑂𝐶
(𝐽1 − 𝐽2) (13) 

 

图 7 离散 SOC 网格下子目标函数插值示意图 

逆向求解出状态空间内所有状态点的最优子目

标函数之后，从初始 SOC 出发，正向推算出最优控

制序列，其对应的电池 SOC 轨迹即为所求的参考

SOC 轨迹。DP 求解的算法流程图如图 8 所示。 
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图 8 动态规划算法流程图 

3.3 动态规划算法优化 

3.3.1 状态量离散程度的确定 

动态规划计算过程中，状态量离散程度直接影

响求解精度和计算时间，若状态量即 SOC 的离散步

长Δ𝑆𝑂𝐶足够小，则求解精度较高，但计算时间更长。

因此，有必要对Δ𝑆𝑂𝐶进行寻优，达到计算精度与计

算效率的折中。 

以测试工况 1 作为试验工况，在初始 SOC 为

40%、目标 SOC 为 30%的条件下，试验 0.02，0.01，

0.001，0.0001 四种Δ𝑆𝑂𝐶下的 DP 求解情况。当Δ𝑆𝑂𝐶

大于 0.02 后，由于网格点过大，DP 算法无法求得

有效解。表 1 展示了试验结果，随着网格点细化，

计算时间线性增长，这是由于 DP 计算复杂度与状

态点数量直接相关。以Δ𝑆𝑂𝐶 = 0.001下的 SOC 轨

迹为标准，计算各个情况下求解的 SOC 轨迹与标准

SOC 轨迹之间的最大误差。Δ𝑆𝑂𝐶 = 0.02时，SOC

最大误差较为明显，终点 SOC 也已无法准确到达目

标 SOC，油耗也高于其他情况。图 9 对比了这四种

情况下求解得到的 SOC 轨迹，可见Δ𝑆𝑂𝐶在0.01数

量级以下时，DP 求解的 SOC 轨迹基本重合，缩小

Δ𝑆𝑂𝐶对求解精度的提升已经不明显。因此，选取

Δ𝑆𝑂𝐶 = 0.01。 

表 1 不同Δ𝑆𝑂𝐶下 DP 求解的结果 

Δ𝑆𝑂𝐶 

（%） 

终点 SOC 

（%） 

油耗 

（L） 

计算时间 

（s） 

SOC 最大

误差（%） 

0.02 29.98 3.938  12.22 0.164 

0.01 30.00 3.937  29.73 0.081 

0.005 30.00 3.936  65.92 0.041 

0.001 30.00 3.936  388.91 / 

 

图 9 不同Δ𝑆𝑂𝐶下 DP 求解的参考 SOC 结果 

3.3.2 SOC 可行域限制 

DP 求解所需时间与每个阶段的状态空间大小

直接相关。由于电池的物理约束以及行程在每一阶

段的需求功率固定，每一阶段中电池 SOC 的变化量

有限，由此可以确定每一阶段 SOC 能够达到的最大

范围，来减少需要遍历的状态点数量进而减少计算

量，即 SOC 可行域限制。 

由式（6）（7）可知，电池 SOC 变化率主要由

电池充放电功率𝑃batt和当前 SOC 值决定，分别满足

以下约束条件： 

𝑆𝑂𝐶min ≤ 𝑆𝑂𝐶(𝑘) ≤ 𝑆𝑂𝐶max (14) 

𝑃batt,chg(𝑆𝑂𝐶(𝑘)) ≤ 𝑃batt(𝑘) ≤ 𝑃batt,dischg(𝑆𝑂𝐶(𝑘)) (15) 

对第𝑘阶段，需求功率𝑃req(𝑘)可通过式（1）求

得，根据增程器发电功率的上下限𝑃RE_max和𝑃RE_min，

可以计算出电池功率的最大和最小值𝑃batt_high和

𝑃batt_low： 

𝑃batt_high(𝑘) = min(𝑃batt,dischrg(𝑘), 𝑃req(𝑘) − 𝑃RE_min) (16) 

𝑃batt_low(𝑘) = max(𝑃batt,chrg(𝑘), 𝑃req(𝑘) − 𝑃RE_max) (17) 

对于阶段𝑘，其下一阶段𝑘 + 1的 SOC 可行域上

边界𝑆𝑂𝐶high(𝑘 + 1)和下边界𝑆𝑂𝐶low(𝑘 + 1)可以通

过阶段𝑘的 SOC 可行域边界推算得到，在𝑘阶段

𝑆𝑂𝐶high(𝑘) 状态点处采取最小可行电池功率

𝑃batt_low(𝑘)时，能够推算出 SOC 在下一阶段的 SOC

可行域上边界；在𝑘阶段𝑆𝑂𝐶low(𝑘)状态点处采取最

大可行电池功率𝑃batt_high(𝑘)时，则推算出 SOC 在

下一阶段的 SOC 可行域下边界。如递推公式（18）

和（19）所示，从初始阶段出发计算每个时刻的 SOC

可行域上下界，直至与式（14）中的 SOC 全局上下

限重合。其中𝑓Trans为状态转移函数。 

𝑆𝑂𝐶high(𝑘 + 1) = 𝑓Trans (𝑆𝑂𝐶high(𝑘), 𝑃batt_low(𝑘)) (18) 

𝑆𝑂𝐶low(𝑘 + 1) = 𝑓Trans (𝑆𝑂𝐶low(𝑘), 𝑃batt_high(𝑘)) (19) 

从终点时刻往前递推，可以进一步求解出从后

往前的 SOC 可行域范围。与正向计算可行域时不

同，逆向计算可行域时，需要把电池消耗𝑃batt功率

后从阶段𝑘 − 1到达阶段𝑘的过程，等效为从阶段𝑘消

耗−𝑃batt功率后到达阶段𝑘 − 1。 

在测试工况 1 上进行 SOC 可行域计算，SOC

的上限与下限分别为 100%和 20%。令初始 SOC 分

别为 20%、40%、60%、80%，目标 SOC 为 30%。

图 10 展示了初始 SOC 为 40%时的可行域示意图，

其中深色区域代表 SOC 可行域，浅色区域代表被排

除的不可行状态点，由图可知，通过上述 SOC 可行

域限制方法，能够将不可行状态点排除在外，大大

减少了 DP 算法需要搜索的状态空间。SOC 可行域

计算结果如表 2 所示，SOC 可行域限制减少了 60%

左右的状态点数量，缩短了 DP 求解时间。 



 

图 10 可行域限制后的 SOC 可行域示意图 

表 2 SOC 可行域限制对状态点搜索空间的优化效果 

初始 SOC 状态点数量（个） 状态点减少比例

（%） 

20 10236061 61.67 

40 11192777 58.09 

60 9470301 64.54 

80 5536581 79.27 

3.3.3 预计算状态转移矩阵和损失矩阵 

注意到在 DP 求解过程中，需要频繁地计算状

态转移函数以及单步损失函数，即： 

𝑆𝑂𝐶(𝑘 + 1) = 𝑓Trans(𝑆𝑂𝐶(𝑘), 𝑃batt(𝑘)) (20) 

𝐿(𝑘, 𝑖, 𝑎) = 𝐿batt(𝑆𝑂𝐶(𝑘), 𝑃batt(𝑘)) + 𝐿RE(𝑃RE(𝑘)) (21) 

通过预计算状态转移结果以及单步损失结果并

保存为状态转移矩阵和损失矩阵，以查表代替原计

算过程，可以进一步减少 DP 求解时间。控制量𝑃RE

只包含图 5 中的十个离散点，因此𝐿RE可通过一维

查表获得；状态转移函数以及电池损失𝐿batt均只和

SOC 值以及电池功率𝑃batt有关。构建状态转移矩阵

𝓣batt ∈ ℝ𝑁S×𝑁A和损失矩阵𝓡batt ∈ ℝ𝑁S×𝑁A，其中𝑁S

和𝑁A分别表示 SOC 和𝑃batt的离散点数量，矩阵中

的元素满足： 

𝓣batt(𝑖, 𝑗) = 𝑓Trans(𝑆𝑂𝐶(𝑖), 𝑃batt(𝑗)) (22) 

𝓡batt(𝑖, 𝑗) = 𝐿batt(𝑆𝑂𝐶(𝑖), 𝑃batt(𝑗)) (23) 

SOC 和𝑃batt的离散引入了误差，离散程度越细

化，误差越小。然而矩阵存储需要额外空间，且矩

阵大小对于内存访问速度也有影响，因此，需要对

离散程度进行寻优。SOC 的离散程度在上文已确定，

因此对𝑃batt的最优离散步长Δ𝑃batt进行参数优化，平

衡求解精度和计算时间。 

在测试工况 1 下进行仿真试验，设置初始 SOC

为 40%、目标 SOC 为 30%，对Δ𝑃batt为 0.01kW，

0.1kW，1kW，2kW 这几种情况进行试验，并与没

有通过查表简化的原始 DP 的结果进行对比，结果

如表 3 所示。可以看出，Δ𝑃batt增加到 0.1 以后，计

算时间显著下降。Δ𝑃batt的进一步增大没有显著减

少计算时间，但显著增大了 DP 求解的误差。图 11

展示了各种Δ𝑃batt值下的 SOC 轨迹对比。可以看出，

当Δ𝑃batt=2kW 时，由于𝓣batt和𝓡batt的离散网格太

大，DP 计算各状态最优子目标函数时引入了过多的

误差，已经严重偏离最优解。综合计算精度和计算

时间，选择Δ𝑃batt=0.1kW 作为最终的状态转移矩阵

和损失矩阵的电池功率离散步长。由表 3 的结果可

以看出，通过预计算状态转移矩阵和损失矩阵，相

比原 DP 算法缩短了 22.75%的计算时间。 

表 3 不同𝛥𝑃batt下 DP 求解的结果 

Δ𝑃batt 

（kW） 

终止 SOC 

（%） 

油耗

（L） 

计算时

间（s） 

最大 SOC

误差(%) 

原 DP 30.00 3.937 11.91 / 

0.01 30.00 3.937  10.78  0  

0.1 30.00 3.937  9.20  0.041  

1 30.00 3.937  8.18  0.205  

2 30.00 3.945  7.99  1.992  

 

图 11 不同𝛥𝑃batt下 DP 求解的参考 SOC 结果 

从表 1 可知，DP 在优化求解过程前，在测试工

况下的计算时间为 17.91 秒，表 3 表明优化求解过

程后，计算时间缩短到了原来的 25.15%，对于长约

3400 秒的测试工况，计算时间为 9.20 秒。文献[3]中

同样基于简化动力模型利用 DP 在线规划参考 SOC，

在总长度 3500 秒左右的驾驶工况下，计算时间约

为 30 秒。由此可见，本文所提出的参考 SOC 规划

算法在计算时间方面能够满足在线应用的需求。 

3.4 参考 SOC结果输出 

通过DP求解得到参考 SOC 与时间的对应关系

曲线（SOC-t）。文献[3,6]中通过对比得出结论，根据

行驶里程获取参考 SOC 值相比基于行驶时间获取

参考 SOC 值的效果更好，因为实际行驶条件下通常

总行驶里程固定，而总驾驶时间会随交通情况变化

而波动较大。通过全局车速曲线，积分获得累积行

驶路程序列𝑺acc = {𝑆1, 𝑆2 … 𝑆𝑇}，将参考 SOC 曲线

的横坐标替换为𝑺acc并执行样条曲线插值，获得最

终的参考 SOC 输出（SOC-S），如图 12 所示。 

 

图 12 参考 SOC 结果。（a）SOC-t 曲线；（b）SOC-S 曲线 

参考 SOC 规划完成后，保存在控制器中，行驶

时依据当前已行驶里程，查取对应的参考 SOC 值。 



4 仿真试验验证 

4.1 结合能量管理策略的 SOC 规划验证 

基于增程式电动汽车前向仿真平台进行仿真试

验，将所规划的参考 SOC 用于能量管理，验证所提

出的基于 DP 的参考 SOC 规划方法。仿真平台如图

13 所示。仿真平台在 MATLAB/Simulink 建立，模

型各主要部件的参数信息及所涉及的主要控制策略

均在之前的工作中有详细陈述[7]。将所规划的参考

SOC 用于自适应等效燃油消耗最小化策略（A-

ECMS），来评估参考 SOC 的效果。A-ECMS 根据

电池实际 SOC 与参考 SOC 的偏差自适应调整等效

因子，能够较为准确地实现对参考 SOC 的跟踪[7]。 

 

图 13 整车前向仿真平台示意图 

进行以下几组仿真来评估所提出的参考 SOC

规划方法的效果。 

1）DP：在对整个行程的行驶工况完全已知的

情况下，通过 DP 计算出的能量管理全局最优解。 

2）CS-ECMS：以纯电模式行驶直到 SOC 下降

到预设阈值（30％）以下，然后启动 A-ECMS 进入

电量维持模式（参考 SOC 值固定）。 

3）DP-ECMS：A-ECMS 应用本文所提出的基

于 DP 的参考 SOC。 

4.2仿真试验 

图14和图15分别展示了三种EMS在初始SOC

为 40%时的电池 SOC 变化曲线以及增程器工作点

变化情况，表 4 列出了主要仿真指标的结果，其中

综合燃油消耗量修正了终点 SOC 对应电耗的等效

油耗，消除了不同 EMS 策略下终点 SOC 不同带来

的油耗差别。 

从图 14 可以看出，利用 DP 规划出的参考 SOC

能够指导 A-ECMS 达到接近全局最优解的 SOC 变

化曲线。从图 15 可以看出，DP-ECMS 与 DP 全局

最优解在增程器工作时机上较为一致。而电量维持

的 CS-ECMS 先消耗完电能再保持电量维持，与 DP

全局最优差距较大。从数值结果来看，DP-ECMS 相

比 CS-ECMS，减少了 4.63%的综合燃油消耗量。 

 

图 14 测试工况 2 下不同 EMS 的 SOC 变化情况 

 

图 15 测试工况 2 下不同 EMS 的增程器工作点变化情况 

表 4 测试工况 2 下应用不同参考 SOC 的仿真结果 

组别 

终点
SOC

（%） 

增程器

启动次

数 

综合燃油

消耗量

（L） 

百公里

综合油

耗（L） 

CS-ECMS 29.79  45 1.582  3.779  

TP-ECMS 29.66  15 1.509  3.604  

全局最优 29.96  10 1.488  3.556  

5 结论 

针对 PHEV 的参考 SOC 规划问题，提出了一

种基于 DP 的参考 SOC 规划方法。通过参数寻优以

及对求解过程优化，优化了 DP 的计算时间，解决

了 DP 算法计算量大、难以实时应用的问题。将所

提出的参考 SOC 规划方法与 A-ECMS 能量管理策

略结合，使用真实世界数据的仿真结果表明，基于

DP 规划的参考 SOC 相比电量维持的参考 SOC，减

少了 4.63%的综合油耗，有效改善了燃油经济性。 
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Abstract: Battery state-of-charge (SOC) planning utilizing traffic information from the intelligent transportation system (ITS) and the 

Internet of Vehicles is promising to improve the performance of the connected plug-in hybrid electric vehicle (PHEV) energy management 

strategy. In this paper, a novel SOC reference trajectory planning method based on traffic forecast was proposed. A data-driven spatio-

temporal graph convolutional neural network (STGCN) model was trained to predict the traffic speed of road networks. Thus, the long-term 

global speed profile can be predicted. Then a DP-oriented simplified power balance model was established and the global reference SOC 

trajectory was planned through dynamic programming (DP) algorithm. Finally, the proposed SOC planning algorithm was combined with 

an adaptive equivalent consumption minimization strategy (A-ECMS) and verified through simulation. Simulation results using real world 

traffic data illustrate that the proposed reference SOC planning method saves 1.76% and 2.27% of fuel consumption respectively compared 

with the charge sustaining reference SOC and the linear decrease reference SOC. 

 
摘 要: 合理的动力电池荷电状态（SOC）规划对于提高插电式混合动力汽车（PHEV）能量管理策略的性能非常重要。本

研究提出了一种基于交通预测的 SOC 参考轨迹规划方法，基于历史交通信息，使用数据驱动的时空图卷积神经网络

（STGCN）模型来预测道路网络的交通速度，在此基础上预测全局车速曲线。建立了面向动态规划（DP）的简化功率平

衡模型，通过 DP 算法，利用预测的全局车速曲线规划 SOC 参考轨迹。最后，将所提出的 SOC 规划算法与自适应等效消

耗最小化策略（A-ECMS）相结合，使用真实交通数据的仿真结果表明，与电量维持的参考 SOC 和线性变化的参考 SOC
相比，所提出的参考 SOC 规划方法分别节省了 1.76%和 2.27%的燃料消耗。 
关键词: 插电式混合动力汽车；能量管理策略；电池 SOC 参考轨迹；交通预测； 
Key words: plug-in hybrid electric vehicle; energy management strategy; reference SOC; traffic forecast 
中图分类号: TK402（请查阅中图分类法第 5 版）                文献标识码: A 

 

0 Introduction 
The plug-in hybrid electric vehicle (PHEV) has multiple 

energy sources, which makes it more potential in energy saving 
and emission reduction, and it has no range anxiety of pure 
electric vehicles, thus its related technologies have received 
extensive attention[1].A PHEV generally contains multiple 
power sources, and the combination of multiple energy sources 
can effectively avoid the inefficient working area of a single 
energy source, helping to increase the life of the energy source 
and reduce system energy loss[2]. But at the same time, the power 
allocation problem of PHEV multi-energy sources is a typical 

multi-objective, multi-constraint and strongly nonlinear 
optimization problem, which is a difficult issue in the control of 
PHEV.  

In order to ensure the vehicles' power performance, fuel 
economy, battery life and the noise, vibration and harshness 
(NVH) performance of PHEV, an efficient and reasonable 
energy management strategy (EMS) is required[3]. According to 
the optimization methods used, EMS is mainly divided into 
three categories[4]: rule-based methods, global optimization-
based methods, and instantaneous optimization-based methods. 
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The global optimization-based EMS can achieve global 
optimum effects. However, full knowledge of the trip in advance 
and powerful computing power is a must. Due to the 
dynamically changing traffic environment, the full trip 
information of vehicles driving on open roads cannot be 
obtained in advance, so global optimization-based EMS is 
difficult for practical application. Instantaneous optimization 
based on partial trip information can not only realize online 
application, but also has a better optimization effect than rule-
based methods. Among them, the equivalent fuel consumption 
minimization strategy (ECMS)[5] and the model predictive 
control (MPC)-based predictive energy management strategy 
(PEMS)[6] are the two most widely studied EMSs based on 
instantaneous optimization. Since the power battery capacity of 
PHEV is larger than that of non-plug-in hybrid electric vehicle 
(HEV), the battery SOC of PHEV can change in a wide range. 
So how to determine the target SOC is a problem must be 
considered when solving the optimization problem online, that 
is, the reference SOC planning problem.[7] 

Many researches have been carried out aiming at the 
problem of reference SOC planning in the EMS of PHEV. Liu 
Y et al.[8] applied PEMS in which the SOC reference trajectory 
decreased linearly according to the driving distance on a fuel cell 
extended-range electric vehicle, and the reference SOC value 
was determined at the end of the rolling optimization prediction 
time according to the ratio of the remaining distance of trip to 
the full distance. Considering that in the actual driving cycle, the 
required power of the vehicle from the start to the end is usually 
not uniformly distributed, the assumption of a linear decrease in 
SOC is not reasonable. Zhou Q et al.[9] used the predicted short-
term vehicle speed sequence, the driving distance, and the 
current driving speed and acceleration as the inputs of artificial 
neural network to forecast the reference SOC. This data-driven 
reference SOC determination method can be applied online, but 
its accuracy heavily depends on the training data.[10] The 
development of intelligent transportation system (ITS) has made 
it possible for vehicles to obtain more travel information in 
advance. Chao Sun et al.[11] proposed a SOC reference trajectory 
planning algorithm combined with real-time traffic speed data, 
using real-time traffic information to form a long-term vehicle 
speed curve, utilizing dynamic programming (DP) to obtain the 
optimal reference SOC trajectory to provide reference SOC 
value for the lower layer of MPC-based EMS. Reference SOC 
planning based on traffic information can make full use of the 
real-time traffic information, but it did not take into account the 
dynamic changes of traffic conditions over time, and the 
calculation consumption of dynamically updating SOC 
reference trajectory planning is too large. 

In view of the above problems, this paper designed a PHEV 
battery SOC reference trajectory planning method combined 
with traffic forecasting. First, a data-driven traffic prediction 
model based on spatio-temporal graph convolutional neural 
network was built and validated. Then the future long-term 
speed profile was predicted using traffic forecasting results. 
With the predicted global speed profile, through DP algorithm, 
the optimal reference SOC trajectory was generated. Finally, 
through simulation performed on a range-extender electric 
vehicle(REEV) forward simulation platform, the reference SOC 
planning method was verified. By combing the proposed 

reference SOC with an adaptive ECMS(A-ECMS) energy 
management strategy in simulation , the performance of A-
ECMS was improved compared with the linearly declining 
reference SOC trajectory. Thus the proposed reference SOC 
planning algorithm was further verified. 

The rest of this paper is organized as follows. Section II 
introduces the traffic prediction-based long-term speed 
prediction. Section III introduces the proposed DP-based 
reference SOC planning method. Section IV presents the 
simulation and discussions of the proposed method, and the 
effect of the reference SOC planning on EMS. Section V 
summarizes the main conclusions. 

1 Traffic Based Long-term Speed Prediction  
In future practical applications, the traffic forecast data is 

assumed to be processed by the ITS in the cloud, the vehicle only 
needs to acquire the traffic forecast data of each node along its 
route through the cloud for long-term vehicle speed generation. 
As shown in Fig. 1, the navigation system on the vehicle plans 
the driving route on departure. According to the driving route, 
the traffic detectors that locate along the route are known. The 
ITS continuously collects traffic data from the road network 
through traffic detectors and stores the data in database. At the 
same time, through graph neural network(GNN) based traffic 
forecast model, the road network can be treated as a whole, 
which brings convenience in predicting the future traffic 
condition of all road sections that equipped with the traffic 
detectors at one time. This also helps long-term vehicle speed 
prediction in that regardless of the start point, end point, and 
driving route, as long as the vehicle drives within the given road 
network range, the future traffic conditions along the route can 
be known according to the predicted traffic information of the 
traffic detectors along the route, which can be obtained from ITS. 

In this study, in order to explore the possibility of traffic 
forecasting to improve the effect of SOC planning, a traffic 
forecasting model was trained and validated to provide traffic 
prediction data. Then a long-term vehicle speed generation 
method based on traffic forecasting was designed to predict the 
global driving condition. 

 
Fig. 1. Schematic diagram of vehicle acquiring data from ITS 

1.1 Traffic Speed Prediction 
Short-term traffic forecasting is an important research topic 

in transportation engineering field[12]. According to the 



algorithm used, traffic forecast method can be divided into 
traditional statistics-based methods and neural network-based 
methods[13]. Traffic prediction problem within road networks 
usually require simultaneous processing of information 
collected by multiple traffic detectors distributed in different 
locations. The future traffic condition is not only related to the 
past historical information in time, but also has a certain 
correlation with the traffic conditions between different nodes in 
space. Because traditional statistical based methods are difficult 
to deal with traffic data that includes both time-dependency and 
space-dependency, spatio-temporal graph convolutional neural 
network (STGCN)[14] is applied to build a short-term traffic 
speed prediction model. 

Traffic data of a road network is represented in graph 
structure. As shown in Fig. 2, the nodes in graph indicate the 
traffic detectors with traffic data while the set of edges indicates 
the connectedness between stations. Traffic data at time ݐ can be 
expressed as ܆௧ = ,ଵ,௧ܠ) ,ଶ,௧ܠ … , ்(ே,௧ܠ ∈ ℝே× , where ܠ,௧ ∈
ℝ represents the traffic data of the ݅-th node at time ݐ, ܰ is the 
number of traffic detector nodes, and C is the number of 
different types of features in the traffic data. Then the historical 
traffic data in the past time window of length h can be expressed 
as ࣲ = ,௧ିାଵ܆) ,௧ିାଶ܆ … , (௧܆ ∈ ℝே×× . The spatial 
interdependence of traffic detector nodes can be represented by 
the adjacency matrix ܹ ∈ ℝே×ே . According to the usage 
scenarios and goals, there are many ways to construct the 
adjacency matrix [15]. In the application scenario of this paper, 
the number of traffic nodes is less in quantity and the connection 
relationship is not complicated. Thus the adjacency matrix is 
constructed in the following form: 

ݓ = ൜1, if ݅ connect with ݆
0, otherwise               (1) 

where ݅ and ݆ are the indexes of two traffic detector nodes, and 
the order of the row index and column index in W is consistent 
with the order of the detector nodes of ࣲ. 

 
Fig. 2. Graph-structured traffic data. 

Thus the training process of short-term traffic forecast model 
can be expressed as : 

݉݅݊ 
ௐഇ

݃൫ࣳ, ࣳ൯ (2) 

ࣳ = ݂(ࣲ; ఏܹ) (3) 

where function f represents the traffic prediction model, and ఏܹ 
represents the parameters to be trained in the model. The model 
takes the historical traffic information ࣲ as input, and outputs 
the traffic prediction result ࣳ ∈ ℝே××  in the forecast time 
window of length p in the future. ࣳ represents the ground truth 

traffic speed in the corresponding forecast time window. The 
function ݃ represents the objective function used to optimize the 
traffic prediction model, where mean square error (MSE) is 
usually used: 

݃൫ࣳ, ࣳ൯ =
∑ ݕ) − ො)ଶݕ

ୀ

݊
(4) 

where ݊  is the number of samples in training set, ݕ and ݕො 
denotes the sample and label of traffic prediction dataset, 
respectively. 

Fig. 3 presents the structural diagram of the STGCN-based 
traffic prediction model used. It mainly consists of several 
spatial graph convolution modules and temporal convolution 
modules. The spatial graph convolution module extracts spatial 
features in the traffic data using Chebyshev polynomial 
approximation of graph convolution: 

Θ ∗࣡ ݔ = Θ(ܮ)ݔ ≈  ߠ ܶ ቀܮ
~

ቁ ݔ
ିଵ

ୀ

(5) 

where ߆ is the parameters of the graph convolution kernel, ∗࣡ is 
the graph convolution operator, ݔ is the traffic data tensor in the 
graph structure, ܮ  is the normalized graph Laplacian matrix 
calculated by the adjacency matrix ܹ, ܭ is the size of the graph 
convolution kernel, ߠ ∈ ℝ is the coefficients of the Chebyshev 
polynomial, ܶ(ܮ෨)  is the Chebyshev polynomial of order k 
evaluated at the scaled Laplacian ܮ෨. 

The temporal convolution module uses 1-D causal 
convolution with gated linear unit (GLU) activation function to 
extract temporal features in the graph structure. The structure of 
GLU is shown in the upper right corner of Fig. 3. Temporal 
convolution and spatial graph convolution are performed 
alternately, and the size of channels are 64 and 16, respectively. 
The batch normalization (BN)[16] layer can deal with the 
distribution change between different samples in a small batch, 
and improve the training efficiency and training effect in deep 
network. 

 
Fig. 3. Architecture of spatio-temporal graph neural network 

1.2 Validation of Traffic Speed Prediction Model 
Real-world traffic datasets were used to verify the traffic 

speed prediction model. Performance Measurement System 
(PeMS)[17] project conducted by California Department of 
Transportation records information such as traffic flow and 
traffic speed throughout the California highway network 
through traffic detectors deployed on highways. Different time 
and area of its data was produced as multiple public datasets 



(PeMS04, PeMS08, etc.), which were widely used in the field of 
short-term traffic prediction. Mobile Century dataset was 
established by UC Berkeley and Nokia through experiments[18], 
which contains the spatio-temporal trajectory data of 1388 
vehicles on the California I-880 road section on February 8, 
2008. The combination of those two datasets was constructed in 
this paper for the verification of traffic prediction method as well 
as long-term speed generation method that will be described in 
detail in next chapter. 

According to the roads involved in the Mobile Century 
dataset, a total of 28 traffic detectors with an absolute mileage 
from 16.4 miles to 27.7 miles in the northbound direction of the 
I-880 highway in PeMS were selected as the dataset for the 
traffic prediction algorithm. The selected road network area and 
corresponding traffic speed on a typical weekday are shown in 
Fig. 4. The selected time period was the working days from 
February 2007 to February 2008. By comparison, it was found 
that the recent traffic situation in this area was still almost the 
same as that in 2008[19], so this dataset is not outdated for study. 
The traffic data were aggregated every 5 minutes. The training 
set, validation set, and test set were divided according to the ratio 
of 3:1:1 in strict time order. The traffic dataset was denoted as 
PeMS-MC. It is worth mentioning that February 8, 2008, which 
is the exact day on which Mobile Century dataset was collected, 
was divided into the test set of PeMS-MC. 

 
Fig. 4. Information of traffic prediction target area. (a) Road network in 
PeMS I880-N area. (b) Traffic speed thermal map of the area on a typical 

weekday. 

The traffic prediction model was deployed on Windows 11 
operating system based on the PyTorch framework, using 
CUDA hardware acceleration (CPU: Intel(R) Core(TM) i7-
12700H@2.30 GHz, GPU: NVIDIA GeForce RTX 3050Ti 
Laptop GPU, 16GB RAM). The input time window of the model 
was the past 60 minutes, that is, 12 historical observation data 
points, and the output was the average vehicle speed of the road 
section in the next 15, 30, and 45 minutes. Due to the limitation 
of the model itself, the long-term traffic prediction effect of 
more than 45 minutes was not stable, therefore only time points 
within 45 minutes were considered. The learning rate was set to 
10-3. The hyperparameters of the model were determined 
through grid search, and the number of samples in a mini-batch 
was set to 64. The early stopping mechanism was used in the 
training process, and the mean square error(MSE) evaluated on 
the validation set was used as the evaluation index for early 
stopping. The maximum allowable epochs of early stopping is 
set to 5 rounds, that is, if the MSE evaluated on validation set 
had no further decline after 5 epochs of training, the training was 

stopped and the epoch with lowest validation MSE was selected 
as final model. 

Error metrics Mean Absolute Error(MAE), Root Mean 
Square Error (RMSE), Mean Absolute Percentage Error (MAPE) 
were used as performance metrics to measure and evaluate the 
performance of different methods. The following baseline 
models are used for comparison with the STGCN traffic 
prediction model applied in this paper: 1) Historical average 
method (HA): The historical average traffic speed at the same 
time-of-the-day in the past week in the dataset is used as the 
predicted value. 2) No prediction method (NM, Naive Method), 
that is, the traffic data at the latest moment is used as the 
prediction value for the future. 3) Back Propagation Neural 
Network (BPNN): Two hidden layers, 1000 neurons in each 
layer. Dropout method with dropout probability of 50% was 
applied on both layers to avoid overfitting. 4) Convolutional 
Neural Network (CNN): Refer to the model in [13]. The 
prediction performance of various models on the test data set are 
shown in TABLE I.  

TABLE I. shows that the model built in this paper based on 
STGCN achieves the best performance in all three evaluation 
metrics. BPNN just expands all the data into a one-dimensional 
vector, which not only has a huge amount of parameters, but also 
does not take advantage of the temporal and spatial correlation 
of traffic data. Although CNN can extract the temporal and 
spatial characteristics of traffic data through 2-D convolution, it 
simply mixes the time dimension and spatial dimension, and its 
feature extraction effect is not as good as that of STGCN. Fig. 5 
shows the prediction effect of the STGCN-based traffic 
prediction model on the traffic speed after 30 minutes on random 
detectors in dataset. It can be seen that the prediction model can 
predict the sudden change of traffic speed more accurately. In 
virtue of the stacking of temporal convolutional layers and 
spatial graph convolutional layers, STGCN can better extract the 
spatiotemporal features in traffic information, quickly respond 
to the dynamic changes of traffic conditions on road segments, 
and the overall prediction effect is satisfactory. 

TABLE I.  PERFORMANCE COMPARISON OF DIFFERENT APPROACHES 

Model Performances(15min/30min/45min) 
RMSE MAE MAPE(%) 

HA 6.94 3.69 9.57 
NM 4.12/6.19/7.65 2.15/3.06/3.78 4.43/6.68/8.50 

BPNN 4.58/5.29/5.85 2.66/2.98/3.24 6.18/7.11/7.93 
CNN 4.04/5.02/5.71 2.45/2.88/3.20 5.40/6.71/7.76 

STGCN 3.37/4.75/5.64 1.91/2.50/2.93 4.12/5.79/7.12 
 

 
Fig. 5. Speed prediction results of 30-minutes horizon on two detectors at 

different locations 

 



1.3 Long-term Speed Generation Based on Traffic 
Prediction 

The framework of the long-term speed generation method is 
shown in Fig. 6. Assume the destination and driving route of the 
trip is known. First, the related traffic detectors in future trip are 
selected. Through traffic forecasting, the traffic speed 
information of each detector within the prediction time window 
is obtained. Assuming that the vehicle driving speed is equal to 
the traffic speed, the long-term vehicle speed prediction results 
are obtained by using the future traffic speed of each road 
section. 

 
Fig. 6. Framework of Long-term Speed Prediction Method 

Given set of detectors I={ ݅, ݅ଵ, …, ݅ௗ}, set of distances 
between adjacent detectors L={ ݈ , ݈ଵ , …, ݈ௗ }, and traffic 
speed prediction result ࢂௗ={࢜, ࢜ଵ, …, ࢜ௗ}, where v is a 
vector with a length of 3, including traffic speed prediction 
results 15minutes, 30minutes, and 45minutes in the future. 
Denote the long-term vehicle speed at road section ݅ as ݑ , then 
ݑ  equals to the traffic speed of current road section. The 
cumulative driving time ݐ  passing through each node can be 
calculated by: 

ݐ = Σୀ
 ݈

ݑ
(6) 

Because ݐ is the time point when ego vehicle arrives the end 
of the ݅′th road section, i.e., begin of the ݅′th plus first road 
section, ݑାଵ can be calculated by applying linear interpolation 
at ݐ in t = [15,30,45] and ࢜ାଵ =  [ݒାଵ,ଵହ, ݒାଵ,ଷ, ݒାଵ,ସହ]. For 
trips longer than 45 minutes, the traffic speed could be predicted 
by historical average method. Thus the long-term speed vector 
u = {ݑ, ݑଵ, …, ݑௗ} can be predicted by calculating each road 
section in turn. In order to obtain smooth long-term speed profile, 
piecewise cubic Hermite interpolation is performed on u every 
0.01miles, as shown in Fig. 7. Thus the predicted long-term 
speed profile can be obtained by calculating each road segment 
in turn. Since it is in the highway scenario, vehicles rarely start 
and stop frequently, so the long-term speed generation method 
is reasonable. Although such predicted long-term vehicle speed 
cannot be directly used for real-time energy management control, 
it can be used as a basis for reference SOC planning, thereby 
improving the effect of EMS. 

 
Fig. 7. velocity profile before and after interpolation 

2 DP-Based Reference SOC Planning 
2.1 Reference SOC Planning Framework 

This paper focus on such a scenario: in highway scenario, 
the destination of the PHEV vehicle is known before departure, 
the driving route has been determined by the navigation system, 
and the future long-term speed has been obtained through the 
long-term speed prediction method explained in detail in 
previous section. As shown in Fig. 8, the reference SOC 
planning is realized in following steps: 1) Construct and verify 
a simplified model of PHEV based on power balance for 
dynamic programming. 2) Based on the global power demand 
calculated by predicted long-term speed profile, use DP to solve 
the trajectory of reference SOC changing with time, i.e. SOC-T 
trajectory. In literature [11,19], it is concluded through 
comparison that acquiring the reference SOC value based on 
driving distance is better than that based on traveling time. 
Therefore, the SOC-T reference trajectory is converted to the 
SOC-S reference trajectory that indicate how reference SOC 
changes with driving distance. 3) In online application, in every 
control loop, EMS retrieves the corresponding reference SOC 
from the reference SOC trajectory through the vehicle's driving 
distance. The reference SOC is then used as a constraint for the 
optimization problem in EMS. 

 
Fig. 8. Framework of reference SOC planning algorithm 

2.2 DP-oriented Simplified Model 
Given global vehicle speed profile, the PHEV energy 

management problem can be viewed as multi-stage optimization 
problem, and the optimal control sequence and corresponding 
SOC trajectory can be solved by DP. DP requires the system to 
be Markovian, therefore control-oriented forward simulation 
model which contains the dynamic processes cannot be used for 
solving DP. In addition, the high computational complexity of 

 



DP requires simplified state transfer model to achieve less 
calculation time. Thus a simplified power balance model was 
established based on an range extended electric vehicle(REEV) 
whose main parameters are shown in TABLE II.  

TABLE II.  PARAMETERS OF REEV 

Items Parameter Value 
Vehicle Curb mass 1740kg 

 Wheel radius 0.33m 
 Windward area 2.586m2 
 Air drag coefficient 0.374 

 Rolling resistance 
coefficient 0.01 

 Main decelerator speed 
ratio 8 

 Drivetrain efficiency 90% 

 Rotating mass conversion 
factor 1.15 

Engine Type Inline four-cylinder 
gasoline engine 

 Displacement 1.5L 
 Rated power 45kW 
 Maximum power 78kW 
 Maximum torque 140 N·m 
 Maximum speed 5200rpm 

ISG motor Type Permanent magnet 
synchronous motor 

 Maximum power 60kW 
 Maximum speed 5000rpm 
 Maximum torque 167 N·m 

Motor Type Permanent magnet 
synchronous motor 

 Maximum power 125kW 
 Maximum speed 12,000rpm 
 Maximum torque 320 N·m 

Battery Type Ternary polymer 
lithium battery 

 Capacity 50Ah 
 Number of series/parallels 96/1 
 Nominal voltage 345.6V 

For the modeling of the RE system, the quasi-static modeling 
of the whole RE system was carried out. Considering the total 
external characteristic of the engine and the efficiency of the 
generator, and avoiding the resonance area to ensure the NVH 
performance, the high-efficiency power generation operation 
curve of the RE was determined. A limited number of operating 
points on the optimal operating curve were selected as shown in 
Fig. 9, and the RE generating power ோܲா  was chosen as the 
control variable. The fuel consumption at different generating 
power ோܲா(݇) was obtained by look up table shown in TABLE 
III.  

ܸ̇fuel(݇) = ݂൫ܲୖ (݇)൯ (7) 
where ܸ̇fuel(݇)  is the volume flow rate of the RE engine 
when the RE generates at ܲୖ (݇), ݂ is the look-up function. 

 
Fig. 9. The optimal working curve of the range extender 

TABLE III.  SELECTION OF WORKING POINTS CORRESPONDING TO 
OPTIMAL WORKING CURVE OF THE RANGE EXTENDER 

Generated 
Power 

kW 

Rotational 
Speed 
r/min 

Torque 
Nm 

Engine 
BSFC 
g/kWh 

Fuel volume 
flow rate 
10ିଷݏ/ܮ 

5 1520 35 370 0.79 
10 1750 58 305 1.24 
15 1750 86 285 1.72 
20 2050 100 282 2.32 
25 2400 109 270 2.83 
30 2950 105 267 3.32 
35 3650 102 287 4.29 
40 3700 114 292 4.94 
45 3700 130 307 5.92 

The motor power is provided by the range extender (RE) and 
the battery pack, and the power consumption of the accessories 
is negligible in this paper. The power balance of the vehicle can 
be expressed by: 

ܲ = ୠܲୟ୲୲ + ܲୖ  (8) 

Where ܲ௧௧ is the battery power, kW, and the negative value 
represents battery charging. ோܲா  is the generating power of RE, 
kW. ܲ is the required power of the drive motor, kW, given by 
the following vehicle longitudinal dynamics formula: 

୰ܲୣ୯ = ቆ݂݉݃ cos ߙ +
ଶݑܣܥ

21.15 + ݉݃ sin ߙ + ݉ߜ
dݒ
dݐቇ

ݒ
୫ߟߟ3600

(9) 

Where ݉ is the mass of the vehicle, kg; g is the acceleration of 
gravity, m/sଶ ; ݂ is the rolling resistance coefficient; ߙ is the 
road slope, °. In this paper the road slope was not considered and 
was set to 0; ܥ is the air drag coefficient; ܣ is the windward 
area, mଶ; u is the vehicle speed, km/h ; ݒ is the speed of the 
vehicle, m/s; ߜ is the conversion factor of the rotating mass; ்ߟ 
is the efficiency of the transmission system, %; ߟ  is the 
efficiency of the driving motor, %, which can be obtained by 
motor efficiency map shown in Fig. 10: 

୫ߟ = ఎ݂(݊୭୲, ܶ୭୲) (10) 



Where motor speed ݊ெை்  and motor torque ெܶை்  can be 
converted from the vehicle speed and resistance torque through 
the wheel radius and the transmission speed ratio respectively. 

 
Fig. 10. Motor Efficiency MAP 

A first-order equivalent circuit model was adopted as the 
battery model. The battery was assumed to work at a constant 
temperature of 313K. Fig. 11 shows the relationship between the 
open circuit voltage, internal resistance and battery SOC. The 
data were all collected from battery charge and discharge 
experiments at temperature of 313K. 

 

 
Fig. 11. Battery model 

The ampere-hour integration method was used to calculate 
the SOC value of the battery: 

(ݐ)ୠܫ = oܷc (t) − ඥ oܷc (ݐ)ଶ − 4000 ⋅ ܴbatt (ݐ) ⋅ bܲatt (ݐ)
2ܴbatt (ݐ) (11) 

̇ܥܱܵ (ݐ) = −
(ݐ)ୠܫ

(3600 ⋅ ܳୠ) (12) 

where ܳ  is the battery capacity, Ah. oܷc  is the open circuit 
voltage of the power battery, V. ܴbatt  is the equivalent internal 
resistance of the power battery, Ω. 

Vehicle road test data were collected to verify the DP-
oriented simplified model. The vehicle speed signal was used as 
the input, the simulated battery SOC were compared with the 
collected output signals of the test vehicle. It can be seen from 
Fig. 12 that the battery SOC error is within ±0.25%. In general, 
the error between the simulation results and the vehicle test 

results is within the acceptable range. Thus, the validity of the 
DP-oriented model was verified. 

 
Fig. 12. Battery SOC Comparison of test vehicle output and DP-oriented 

model simulation output. 

2.3 Reference SOC Trajectory Planning Based on DP 
As analyzed above, the application scenario of reference 

SOC trajectory planning is when the start point, end point and 
path are known, and the speed profile of the whole journey has 
been predicted by the long-term speed generation algorithm. The 
current SOC of the vehicle and the target SOC when arriving at 
the destination have been confirmed based on the user's driving 
habits and power grid scheduling. Therefore, the SOC reference 
trajectory planning is a global optimization problem with fixed 
states at both ends of the start and end. In this paper, backward 
DP is used to solve the optimization problem. The 
computational complexity of DP is closely related to the size of 
the state space and decision space. In order to avoid the curse of 
dimension caused by too many state variables and control 
variables, battery SOC was chosen as the only state variable, and 
the RE generating power was chosen as the control variable. A 
limited number of operating points on the optimal operating 
curve were selected as feasible control command. The battery 
SOC is discretized with a fixed grid size of 0.01%. 

The discretized time step of DP was set to 1s, thus the 
state transition equation of DP can be derived from (11) and 
(12)： 
SOC(݇ + 1) = SOC(݇) − 

oܷc(݇) − ට oܷc(݇)ଶ − 4ܴbatt (݇)( ܲ(݇) − ோܲா(݇))

2 3600 ܴbatt (݇) ܳ
(13) 

where ݇ is the index of current stage. 

This paper mainly focuses on combining traffic prediction 
information with battery SOC planning. Since the planned 
reference SOC will not be used to directly control the vehicle, at 
present the objective function only took into account the fuel 
consumption which is usually the most concerned factor. The 
DP single step objective function can be written as: 

,(݅)ݔ൫ܮ ൯(ܽ)ݑ = ܸ̇fuel(ݑ(ܽ)) ൫14൯ 

where ݔ is the state variable and ݅ is the index of state variable. 
 .is the control variable and ܽ is the index of control variable ݑ

In order to ensure the SOC value at final stage ܰ equals to 
the target SOC, the following SOC penalty term was introduced 
in the objective function as follows : 



((݅)ݔ)ௌைܮ = ߙ ∙ ((݅)ݔ)ܥܱܵ) − ௧௧)ଶܥܱܵ ൫15൯ 

Then the objective function can be finally written as: 

DPܬ = ݉݅݊( ,(݇)ݔ൫ܮ ൯(݇)ݑ
ܰ

݇=1

+ (ܥܱܵܮ (16) 

The DP was solved backward from the last stage ܰ to the 
initial stage by the following recursive equations: 

,൫ܰ∗ܬ ൯(݅)ݔ = ൯(݅)ݔௌை൫ܮ ൫17൯ 

for 1 <= ݇ < ܰ: 

,൫݇∗ܬ ൯(݅)ݔ = min
ழழேೌ

ቀܬ∗൫݇ + 1, ൯(݅݅)ݔ + ,(݅)ݔ൫ܮ ൯ቁ(ܽ)ݑ ൫18൯ 

where ܬ∗൫݇,  ൯ is the optimal sub-objective function at state(݅)ݔ
݅ of stage ݇. The flow chart of backward dynamic programming 
algorithm is shown in Fig. 13. 

To ensure the safety of system operation, the following 
constraints on the key parameters of each power component 
were considered in the process of DP multi-stage decision-
making: 

ܥܱܵ ≤ (݇)ܥܱܵ ≤  ௫ܥܱܵ
ܲ௧௧,(ܱܵܥ(݇)) ≤ ܲ௧௧(݇) ≤ ܲ௧௧,ௗ௦(ܱܵܥ(݇)) 

((݇)ܥܱܵ)௧௧,ܫ ≤ (݇)௧௧ܫ ≤  ((݇)ܥܱܵ)௧௧,௫ܫ
ெܲ௧, ≤ ܲ(݇) ≤ ெܲ௧,௫ 

ெܶ௧,(݊(݇)) ≤ ெܶ௧(݇) ≤ ெܶ௧,௫(݊(݇)) 
where ܱܵܥ௫ and ܱܵܥ are the upper and lower limits 
of the power battery SOC, %; ܲ௧௧, and ܲ௧௧,ௗ௦are the 
maximum battery charge and discharge power, kW; 
 ௧௧, are the upper and lower limits of theܫ ௧௧,௫ andܫ
power battery charge and discharge current, A; ெܲ௧,௫ and 

ெܲ௧, are the upper and lower limits of the drive motor 
power, kW; ெܶ௧,௫  and ெܶ௧,  are the maximum and 
minimum drive motor torque, Nm. 

 
Fig. 13. Flow chart of dynamic programming algorithm 

3 Simulation Results and Discussion 
In this section, we first evaluated the proposed reference 

SOC planning method. Then the proposed method is 
incorporated with A-ECMS proposed in early work[20] to discuss 
the importance of accurate SOC planning on EMS. All the 
simulations were performed on a personal computer with an 
Intel Core i7-12700H@2.30 GHz.  

3.1 Vehicle Simulation Platform 
To verify the proposed long-term speed generation method 

and the proposed reference SOC planning method, an REEV 
vehicle simulation platform incorporating with the external 
traffic information is established as shown in Fig. 14. The 
models of main components of the vehicle powertrain as well as 
the control strategies such as the A-ECMS energy management 
strategy were established on MATLAB/Simulink platform and 
introduced in detail in our previous work[20]. 

The traffic prediction model was trained off-line using 
historical traffic data and used online using real-time traffic data 
as input. Real-time traffic information and the traffic prediction 
model were assumed to be processed externally. When starting 
to plan the reference SOC, the vehicle controller will generate 
the list of traffic detectors along the future driving route 
according to the route determined by the navigation system. The 
list will then be sent to the traffic prediction model deployed in 
cloud, and the future traffic prediction data of the corresponding 
road sections will be obtained for long-term speed generation. 
Once the reference SOC planning is completed, the 
correspondence table between the reference SOC and the 
driving distance is saved in the VCU. While driving, the EMS 
checks the corresponding reference SOC value through the 
current traveled distance. Once the driving route changes or the 
traffic information is updated, the procedures introduced above 
can be repeated to carry out a new reference SOC planning. 

Mobile Century dataset contains the spatio-temporal 
trajectory data of 1388 vehicles on the northbound of California 
I-880 highway on February 8, 2008, all of which were collected 
on an 11.3-miles road segment through the GPS of mobile 
phones. Just on the same road segment, 28 PeMS traffic 
detectors were deployed to collect macroscopic traffic data. 
Combined with the traffic prediction model trained on PeMS-
MC dataset, the effectiveness of the proposed long-term speed 
generation method can be verified. 

 
Fig. 14. Flow chart of the REEV forward simulation platform 



3.2 Long-term Speed Generation Evaluation 
The proposed long-term speed generation method was 

compared with benchmark method that was without knowledge 
of future traffic conditions. The main difference between the 
proposed traffic prediction-based method and benchmark 
method is shown in Fig. 6. Assume that the traffic speed of road 
section ݅  is ݒ  when the vehicle starts, and after 30 minutes, 
when the vehicle actually drives to road section ݅, the traffic 
speed changes to ݒ due to the change of traffic conditions. The 
proposed method can take the dynamic change of traffic 
condition into consideration and predict the change while the 
benchmark method can not. 

For a random real vehicle trip data in the Mobile Century 
dataset, using the proposed long-term vehicle speed generation 
method, the long-term vehicle speed prediction results are 
shown in Fig. 15. It can be seen from Fig. 15 that, compared with 
the method that does not consider traffic forecast but only uses 
real-time traffic speed to generate long-term speed, the proposed 
method can predict the change of road conditions in the future, 
thereby generating a long-term vehicle speed that is closer to the 
ground truth trip. Due to the limitation of the coverage of traffic 
detectors, the long-term speed of positions between two traffic 
detectors is calculated by interpolation, which results in the 
unavoidable error between predicted long-term speed and 
ground truth drive speed of ego car. In addition, the actual 
driving trajectory of the vehicle is related to driver's driving 
habits. So there is still a certain difference between the predicted 
long-term vehicle speed and the actual driving speed of ego 
vehicle, and the error is within the tolerable range. 

In order to further verify the long-term vehicle speed 
generation method, for all the real-world vehicle trajectory data 
in the Mobile Century dataset, the long-term vehicle speed is 
predicted. To verify long-term prediction performance of 
proposed method, 3 groups of experiments including predict at 
start time, predict 15 minutes in advance before start, and predict 
30 minutes in advance before start are conducted, and the long-
term vehicle speed prediction results are compared with the 
ground truth driving trajectories. The RMSE error and 
correlation coefficient indicators of vehicle speed are shown in 
Table 2. Compared with the method of not considering the 
traffic forecast and only using the nearest real-time traffic speed 
to generate the long-term vehicle speed, the method using the 
traffic speed obtained from the traffic forecast has a large 
improvement in the correlation coefficient and RMSE metrics. 
Therefore, the effectiveness of the long-term vehicle speed 
generation method based on traffic forecasting is verified. 

 
Fig. 15. Long-term speed generation with and without traffic prediction 

TABLE IV.  EFFECT OF TRAFFIC PREDICTION IN LONG-TERM SPEED 
GENERATION 

Group 
Error Metrics(0/15/30min in advance) 

Correlation 
Coefficient RMSE: mile/h 

Without Prediction 65.7/54.7/45.9 10.49/13.80/14.75 

With Traffic 
Prediction 69.4/63.8/57.2 9.58/11.84/12.22 

Improvement: % 5.4/16.5/24.6 8.7/16.7/19.8 

3.3 Reference SOC Planning Evaluation 
Due to the limited length of the Mobile Century 

experimental road section, most of the individual trips are no 
more than 10 miles long. In order to verify the proposed SOC 
reference trajectory planning method, 20 vehicle trajectories are 
randomly selected from the Mobile Century dataset, and each 
group of 5 is spliced into 4 long driving cycles for simulation 
tests, as shown in Fig. 16. It is worth mentioning that the road 
slope is ignored in this paper due to missing data on road slope, 
and the road slope factor can be taken into consideration through 
(9). 

 
Fig. 16. 4 stitched driving cycles randomly extracted from mobile century 

According to the departure time of the trip in Mobile Century, 
the real-time and historical traffic flow speed data of the 
corresponding road segment at the corresponding time are 
obtained from the PeMS dataset as the input of the proposed 
SOC reference trajectory planning algorithm. In order to 
demonstrate the effectiveness of the proposed method, the most 
widely used linear descent method in which reference SOC 
decrease linearly with driving distance is used as benchmark. 
For each driving cycle in Fig. 16, simulation tests are carried out 
under three different initial SOC (30%, 40%, 50%). TABLE V. 
shows the average RMSE and correlation coefficient of 
proposed method and linear descent method with DP global 
optimal SOC trajectory. It can be seen that the reference SOC 
obtained by proposed method has lower RMSE error and higher 
correlation coefficient than the linear descent reference SOC, 
which means that the reference SOC generated by proposed 
method is closer to the DP global optimal result. Fig. 17 shows 
the detail of long-term vehicle speed prediction and reference 
SOC planning results of trip 1. Firstly, the actual speed profile 
and long-term vehicle speed prediction results are compared. It 



can be seen from the figure that the long-term vehicle speed 
prediction method combined with traffic forecasting can predict 
the long-term vehicle speed close to the actual trip. Three types 
of reference SOC, first the DP global optimal SOC trajectory 
calculated with foreknowledge of the actual trip, second the 
SOC reference trajectory obtained by the proposed SOC 
reference trajectory planning algorithm, and finally the currently 
most used SOC reference trajectory which decreases linearly 
with the driving distance from the initial SOC to the target SOC， 
are compared in Fig. 17. It can be seen from the figure that 
thanks to the prediction of future trip, the proposed SOC 
reference trajectory planning algorithm is closer to the DP global 
optimal SOC reference trajectory than the linearly decreasing 
SOC reference trajectory. 

TABLE V.  SIMULATION  RESULTS OF PROPOSED METHODS AND LINEAR 
DECREASE MTHOD 

Drive 
Cycle Methods RMSE Correlation 

Coefficient 

1 Linear 1.13 82.74 
Proposed 0.48 91.81 

2 Linear 1.89 81.54 
Proposed 0.94 97.48 

3 Linear 1.28 82.58 
Proposed 0.49 98.08 

4 Linear 0.89 81.60 
Proposed 0.81 90.08 

 

 
Fig. 17. Reference SOC planning result under trip 1 

3.4 Effect of the reference SOC planning on EMS 
An A-ECMS strategy is used to evaluate exactly how much 

improvement the proposed reference SOC planning method will 
bring to the EMS. The A-ECMS adaptively tunes the equivalent 
factor (EF) according to the deviation of the actual battery SOC 
and the reference battery SOC and demonstrates the ability of 
tracking the reference SOC well. The A-ECMS is explained in 
detail in our previous research[20]. 

Based on different reference SOCs, five groups of 
simulations are executed to evaluate the effect of proposed 
reference SOC planning method. 

1) Power Follower Strategy: rule-based EMS that simply 
starts RE when the SOC is lower than preset threshold(30%) and 
generating power of RE follows the vehicle demand power. Will 
shut down when the SOC reaches the preset threshold(35%). 

2) DP: global optimum calculated by DP algorithm with full-
knowledge of driving cycle. 

3) Proposed: A-ECMS with reference SOC generated by the 
proposed reference SOC planning method. 

4) Linear-ECMS: A-ECMS with reference SOC that 
decreases linearly according to the driving distances. 

5) CS-ECMS: A-ECMS that only consume electricity until 
SOC drops under preset threshold(30%), and then start charge-
sustaining(CS) mode which is equivalent to a fixed reference 
SOC. 

The traffic prediction is assumed to be computed on cloud. 
The controller access real-time traffic prediction information 
from the cloud/Internet, and complete long-term speed 
generation and reference SOC generation. 

The real speed profile of drive cycles are completely 
unknown to simulations. The PI controller driver model in the 
forward simulation platform controls the pedal so that the 
vehicle speed follows the current target vehicle speed. The 
calculation time for a reference SOC planning process in the 
simulation is less than 10s, which means that the proposed 
reference SOC planning method has the possibility of real 
vehicle application and updating during driving. 

Simulation results of trip 2 are shown in Fig. 18. Dot lines 
represent reference SOC curves of each method and solid lines 
represents actual battery SOC trajectories of each method. It can 
be observed that A-ECMS can well follow the reference SOC in 
all groups. And the reference SOC generated by proposed 
method can produce reference SOC close to DP global optimal 
SOC trajectory. The error between proposed reference SOC and 
DP global optimum SOC accumulates because the long-term 
speed prediction accuracy drops with time. TABLE VI. shows 
the terminal SOCs and fuel costs of each group. For the fairness 
of the comparison, the fuel consumption caused by the deviation 
in terminal SOC is converted to the equivalent fuel consumption 
by formula(23). As expected, the fuel consumption of A-ECMS 
with proposed reference SOC is the lowest compared with the 
CS-ECMS and Linear-ECMS strategy, and the A-ECMS with 
proposed reference SOC achieves fuel economy optimality 
close of the DP benchmark. 

 
Fig. 18. Battery SOC trajectories of trip 2. Dot lines represent reference SOC 

and solid lines represent actual battery SOC. 



TABLE VI.  SIMULATION RESULTS FOR TRIP 2 

Type Terminal 
SOC/% 

Fuel 
Cost/L 

Equvalent 
Fuel Cost/L 

Fuel 
Optimality/% 

DP 30.00 2.05 2.05 100 
Power Follower 33.93 2.37 2.12 96.33 

Proposed 30.36 2.14 2.07 98.73 
Linear-ECMS 30.69 2.12 2.11 97.10 

CS-ECMS 30.32 2.06 2.09 97.80 
Fig. 19 shows the fuel optimality(compared with DP global 

optimal) of all methods under all four experimental driving 
cycles. It can be observed that the proposed method can achieve 
the best fuel optimality in all cycles, while the performance of 
CS-ECMS and Linear-ECMS is not stable under different 
driving cycles. Compared with the widely used linearly 
decreasing SOC and charge sustaining reference SOC, the 
proposed reference SOC planning method achieves 1.76% and 
2.27% improvement in fuel economy, respectively. This further 
illustrates that the proposed reference SOC planning method can 
guide PHEVs to perform better energy management. 

The demonstrated simulation results are conducted in a high-
way driving scenario with congestion extracted from the Mobile 
Century dataset. Observed results may vary with different 
driving cycles and traffic conditions. However, the proposed 
reference SOC planning method proves to be effective in 
achieving near optimal fuel economy with predicted traffic 
information. 

 
Fig. 19. Fuel optimality comparison on all 4 trips. 

4 Conclusions 
(1) The traffic speed prediction algorithm based on STGCN 

achieves higher accuracy than BPNN, CNN and other methods, 
and can generate more accurate long-term vehicle speed curves. 

(2) The simplified vehicle model based on power balance 
can be utilized for calculation of DP, and compared with the 
high-fidelity control-oriented model, the SOC error is less than 
0.5%. The DP-based PHEV battery SOC reference trajectory 
planning method can plan a reasonable SOC reference trajectory 
according to the predicted long-term vehicle speed curve. 

(3) Combined with the A-ECMS energy management 
strategy, the experimental results under multiple real driving 
cycle data show that the proposed SOC reference trajectory 

planning method can bring better fuel economy than other 
methods that do not consider traffic prediction information. 
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