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ABSTRACT 

In this academic investigation, we employed Acoustic 
Emission (AE) monitoring and a Convolutional Neural 
Network (CNN) to scrutinize hydrogen-induced crack behavior 
in hydrogen-precharged 304 austenitic stainless steel during 
tensile stress. This study's pivotal findings reveal that AE 
monitoring adeptly captures sound wave signal alterations 
induced by material stress, especially during the critical phase 
of crack initiation, from the late stage of strengthening to the 
necking stage. Additionally, industrial-grade Computed 
Tomography (CT) scans corroborated the presence of a 
singular principal crack during these phases, aligning with the 
crack type identified through unsupervised clustering analysis 
of  Short-Time Fourier Transform（STFT）-processed AE 
signals using the Density-Based Spatial Clustering of 
Applications with Noise（DBSCAN）algorithm. The developed 
CNN model, demonstrating a 98.32% accuracy rate in 
validation, effectively discriminated between the signals 
corresponding to distinct stages of material damage. This 
research underlines the efficacy and practicality of integrating 

AE monitoring with deep learning for hydrogen induced 
damage detection in materials. 

Keywords: Hydrogen Embrittlement; Acoustic Emission 

Monitoring; Deep Learning; Austenitic Stainless Steel; 

DBSCAN Algorithm; CNN Model 

 

1. INTRODUCTION 

Hydrogen, as a clean energy source, demonstrates 

immense potential in addressing global energy crises and 

reducing environmental pollution. In recent years, with the 

advancement of hydrogen technology, hydrogen's applications 

in energy storage, transportation, and as a fuel have expanded 

rapidly. However, these applications pose a significant 

materials science challenge: hydrogen embrittlement [1]. 

Hydrogen embrittlement refers to the phenomenon where the 

toughness and strength of metals and alloys significantly 

decrease in environments with hydrogen gas or internal 

hydrogen atom penetration [2]. This phenomenon is 

particularly crucial in high-pressure hydrogen environments 
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and can lead to unexpected failures in critical structures 

like pipelines and pressure vessels, causing substantial 

economic losses and safety hazards. 

Research on hydrogen embrittlement began in the early 

20th century, initially focusing on steel and other traditional 

metal materials [3-4]. Over time, researchers found that 

hydrogen embrittlement also significantly impacts high-

performance alloys, such as austenitic stainless steel. Due to its 

excellent mechanical properties and corrosion resistance, 

austenitic stainless steel is widely used in fields like chemical, 

nuclear, and marine engineering [5-6], especially important in 

hydrogen transportation and storage.  

In recent years, scientists have been striving to gain a 

deeper understanding of hydrogen embrittlement, particularly 

its impact on austenitic stainless steel. On one hand, advanced 

experimental techniques like Transmission Electron 

Microscopy (TEM) and Scanning Electron Microscopy (SEM) 

have allowed researchers to observe the process of hydrogen-

induced crack formation at the micro level. On the other hand, 

theoretical models and computational methods have been used 

to predict and explain the mechanisms of hydrogen 

embrittlement [7-8]. These studies provide crucial guidance for 

improving the design and treatment of austenitic stainless steel. 

Despite these advancements, the detection of hydrogen 

embrittlement remains a challenge [9-10]. According to API 

510 standards, regular inspections and tests of hydrogen 

equipment are typically conducted through hydrostatic testing 

complemented by traditional non-destructive testing 

procedures [11-12]. However, these methods cannot detect 

damage during equipment operation. During material 

deformation, a phenomenon known as AE occurs, where elastic 

stress waves are released due to the accumulation of energy 

[13]. Over the past few decades, AE in-situ monitoring 

technology has been proven to effectively detect hydrogen 

damage in materials [14]. The application of AE technology 

offers a new solution to this problem [15-16]. AE is a non-

destructive testing technique that can monitor microcracks and 

damage within materials in real-time. Advanced analysis 

methods, such as CNN, can be used to conduct deeper analysis 

of collected AE signals, allowing for timely and accurate 

identification of material changes caused by hydrogen 

embrittlement. Toubal et al. [17-18] used the AE method to 

study the crack formation caused by stress concentration during 

hydrogen diffusion tests. They discovered stress concentration 

during the hydrogen diffusion process and discussed the use of 

AE methods for hydrogen embrittlement detection. Qiu Feng et 

al. [19] used the AE method to study the damage mechanisms 

and characteristics of hydrogen reactors. Additionally, for the 

identification of hydrogen damage characteristics based on AE, 

traditional machine learning methods rely on manual 

experience for feature extraction. The optimization of feature 

design, feature extraction, and model training cannot be 

combined [20]. 

Existing studies often involve repetitive removal and 

reinstallation of samples during signal collection to interpret 

the acoustic signals, a process that is cumbersome and prone to 

introducing experimental inconsistencies [21-22]. This 

research proposes using an unsupervised machine learning 

clustering algorithm to categorize AE signals collected 

throughout the experiment, offering a new approach in 

selecting datasets for damage recognition models using deep 

learning. 

 

2. EXPERIMENTAL CONDITIONS  
The study was repeated three times under the same 

conditions, it utilized 304 austenitic stainless steel to prepare 

the samples [23], the composition of 304 austenitic stainless 

steel is as shown in Table 1. As depicted in Figure 1, the 

samples were rectangular iron bars with 200 mm in length, 20 

mm in width, and 3 mm in thickness. The samples, which 

include a holding section transitioning to a parallel section via 

an arc, were sanded and polished with sandpaper and polishing 

wheels on the surface of the blanks to a surface roughness of 4. 

They were then subjected to high-pressure hydrogen charging 

at 300°C and 20 MPa for five days. 

AE monitoring was conducted using two NANO-30 GO34 

type miniature sensors linearly arranged on the samples, closely 

contacting them through a coupling agent. The sensor locations 

are illustrated by the blue circles in Figure 1. Each sensor has a 

monitoring range of 10 cm, so changes in the AE signal at all 

positions of the specimen can be monitored. The sensor outputs, 

amplified by a preamplifier with a 40dB gain, were fed into a 

computer for data recording and monitoring. 

Instron hydraulic tensile testing machines were employed 

for loading the samples. Pre-stretching at low stress eliminated 

friction between the sample holding sections and the testing 

machine. During the actual stretching experiment, with a strain 

rate of 5×10^-5 mm/s, AE signals were continuously monitored, 

as shown in Figure 2. 

TABLE 1: CHEMICAL COMPOSITION OF THE 304 AUSTENITIC STAINLESS STEEL USED 

 C Si Mn P S Ni Cr Fe 

Type 304 0.05 0.61 1.56 0.04 0.024 8.55 18.2 Balanced 
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Before collecting AE signals, a 15-20 minute background 

noise measurement was performed to set a fixed threshold for 

the AE monitoring software. The software parameters are 

detailed in Table 2, using a sampling rate of two Million 

Samples Per Second (MSPS), the Peak Definition Time (PDT) 

is 300 microseconds, the Hit Definition Time (HDT) is 600 

microseconds, and the Hit Lockout Time (HLT) is 1000 

microseconds. After the samples were stretched at a constant 

rate until rupture, the AE signals collected throughout the 

stretching experiment were saved for further analysis. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

FIGURE 1: SPECIMEN SIZE AND SENSOR LOCATION 
 

 
FIGURE 2: EXPERIMENTAL ASSEMBLY 
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3. RESULTS 
3.1 Analysis and Processing of Acoustic Emission 
Signals 

We show the process of analyzing the results of one set of 

experiments as an example. The study began recording AE 

signals from 10,000 seconds, corresponding to the curve 

inflection point in Figure 4, marking the onset of the necking 

stage and the initiation of cracks, evident from the significant 

increase in the number and amplitude of AE signal points in 
Figure 3. At the moment of material fracture, the amplitude of 

AE signals peaked. Analysis of Figure 5 revealed that the 

fracture location was near Sensor 2, corroborating the data 

shown in Figure 6, where a high number and amplitude of AE 

points were observed near the coordinates of Sensor 2. 

A comprehensive analysis revealed that AE signals during 

material fracture exhibit characteristics such as a sudden 

increase in frequency and amplitude, reflecting rapid energy 

release; an increase in signal amplitude due to material failure; 

higher frequency components due to the rapid propagation of 

cracks; and the localization of AE sources primarily near the 

area where fracture is imminent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 5: HYDROGEN-PRECHARGED SPECIMEN FRACTURE FIGURE 6: VARIATION OF AMPLITUDE IN LOCATION 
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3.2 Comparison of Tensile Curves between 
Hydrogen-Precharged Samples and Non-Hydrogen-
Charged Samples 

Two sets of tensile tests were performed on non-

precharged hydrogen specimens of the same size under the 

same experimental conditions. One set was taken as an example 

for analysis. Comparing Figures 4 and 7, it is observed that the 

tensile strain at fracture for the non-hydrogen-charged samples 

is approximately five times that of the hydrogen-precharged 

samples. Additionally, an analysis of Figures 5 and 8 reveals 

that the length of the non-hydrogen-charged samples after 

fracture is greater than that of the hydrogen-precharged samples. 

In order to quantitatively compare the effect of hydrogen 

concentration in the specimen on the tensile strain, we took a 

10mm×10mm×3mm square from the hydrogen-precharged 

sample that had undergone tensile test for Total Dissolved 

Solids (TDS) testing, and used HIDEN TPD Workstation to 

measure the hydrogen concentration for 5.72h under a starting 

temperature of 20 degrees Celsius and a vacuum level of 10!"# 
times the standard atmospheric pressure. The Mass Spec 

Response-Elapsed Time graph line was Figure 9, we obtained 

the mass of hydrogen in the cube of 4.72×10!$g. The cube was 

weighed (Figure 10 for calculating hydrogen concentration of 

the specimen) to give the mass of 1.9651 g. The hydrogen 

concentration of the specimen was calculated to be 24 parts per 

million (ppm)，the formula is %('!)
%()*+,)×10

-. 

The toughness was derived by calculating the area under 

the stress-strain curve, we got that the toughness of the non-

precharged hydrogen specimen was 353.87MPa, and the 
toughness of the hydrogen-precharged specimen was 

55.52MPa. We can calculate the proportion of toughness 

reduction, the formula is the proportion of toughness reduction 

= (1 − ./*012,33	/5	61,	1789/0,2:6,8	3;,)<%,2
./*012,33	/5	*21789/0,2:6,8	3;,)<%,2 ) × 100% . 

According to the calculation, the toughness of the specimen 

with hydrogen content of 24 ppm is reduced by about 84.31%. 

This indicates that the strain of the hydrogen-precharged 

specimen in the tensile experiment is drastically reduced 

compared to the non-precharged hydrogen specimen, reflecting 

a significant reduction in toughness. This significant reduction 

in toughness points to the strong negative impact of hydrogen 

embrittlement on material properties.

 
FIGURE 9: MASS SPEC RESPONSE-ELAPSED TIME CURVE 
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3.3 Unsupervised Clustering of Acoustic Emission 
Signals 

In our study, we use the MATLAB language to address the 

signal data from the audio file to perform the short time Fourier 

transform. The Short-Time Fourier Transform is a signal 

processing technique used to analyze frequency and phase 

changes over time. Unlike the traditional Fourier Transform 

(FT), the STFT splits the signal into small segments and then 

performs a Fourier Transform on each small segment to be able 

to observe the change in the frequency components of the signal 

at different points in time. In this way, the STFT can provide 

information about the signal in both time-frequency dimensions, 

helping to understand the local characteristics of the signal. 

Every 2048 data points were taken as a signal sample, after 

multiple iterations of experiments, it was determined that a 

sliding window size of 164 samples and a stride length of 41 

samples can effectively reflect the local characteristics of the 

signal, and then standardized the STFT result. 

 We conducted a clustering analysis on the STFT results 

of the acoustic emission signals, The study utilized the 

DBSCAN algorithm for unsupervised clustering of AE signals 

processed through STFT. DBSCAN excels in handling clusters 

of various shapes and sizes and demonstrates robustness 

against noise. Unlike centroid-based algorithms like K-means, 

DBSCAN does not require prior knowledge of the number of 

clusters, making it effective for complex datasets and outlier 

detection. DBSCAN's application spans various industries, 

including seismology and ecology. 

In DBSCAN, a point's density is defined by the number of 

points within its ε-neighborhood. A point becomes a core point 

if at least minPts other points are within its ε-neighborhood, 

indicating a high-density area. Border points, although not core 

points themselves, are within the ε-neighborhood of a core 

point. Points not qualifying as either core or border points are 

considered noise. The algorithm clusters core points and their 

density-reachable points (including other core points and 

border points). Clusters merge if a core point is density-

reachable from another core point, allowing clusters to grow in 

size and shape. 

For the STFT results, a zero matrix was initially allocated 

to store features of all files. Each file was processed in a parallel 

loop, calculating spectral centroid, band energy ratio, spectral 

entropy, and average brightness of the STFT histogram. 

Features were standardized to zero mean and unit variance. 

Epsilon (ε) and minPts were determined to establish the 

clustering model, with epsilon defining the maximum distance 

for points to be considered neighbors and minPts set as the 

number of points required in a neighborhood to define a core 

point. K-nearest neighbors search calculated the k-distance for 

each point, and a k-distance graph was plotted. The epsilon 

value was chosen from the "elbow" of the k-distance graph (the 

point of maximum curvature), with minPts set to one more than 

the number of features. Following these steps, DBSCAN 

clustering was performed, and scatter plots visualized the 

results. 

We focused particularly on two distinct stages: the initial 

half of the hardening phase and the transition from the late 

hardening to the necking stage, to determine the appropriate 

parameters for the DBSCAN algorithm in these stages, we first 

plotted k-distance graphs (as shown in Figures 12 and 14). 

Given that the feature count was four, we set the minPts 

parameter to 5, one more than the number of features. With 

these parameters, we executed the DBSCAN algorithm and 

created scatter plots (illustrated in Figures 11 and 13) to 

visualize the clustering outcomes. 
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Analyzing Figures 11 and 13, Feature 1 represents the 

spectral center of mass, which is obtained by calculating the 

weighted average of all frequency components, where the 

weights are the amplitudes of the corresponding frequency 

components. The spectral center of gravity can indicate the 

location of the "center of gravity" of the signal spectrum and is 

usually associated with the perceived brightness of the signal. 

Feature 2 is the ratio of the energy in the first quarter of the 

calculated frequency range to the energy of the entire spectrum, 

and this ratio reflects the distribution of signal energy in a 

particular frequency band. Label -1 denotes noise points, label 

1 and label 2 denote different clustering labels, and each 

number represents a different cluster of clusters. A distinct 

clustering pattern was observed in the initial half of the 

hardening stage, characterized by a prominent cluster of red 

points on the right side in Figure 11. In contrast, during the late 

hardening to necking transition, two separate clusters emerged: 

a cluster of yellow points on the left and a cluster of red points 

on the right in Figure 13. A comparison of the central 

coordinates of the red clusters in both figures revealed their 

proximity to the (0,0) coordinate, indicating similarity in the 

signal types. The presence of the yellow cluster primarily in the 

later stage suggests its association with crack signals. In 

summary, it can be obtained that label 1 is the normal structure 

data label and label 2 is the cracked structure data label. 

Additionally, during the late strengthening phase to the 

necking stage of the specimen stretching process, we conducted 

Industrial CT(SANYING-TS20131) inspection and X-ray 

digital imaging inspection from different directions and angles, 

four times each. The X-ray digital imaging inspection had a 

maximum tube voltage of 225 kV, a spatial resolution of ≤ 2 

µm, a density resolution of ≤ 2%, and used a flat panel detector 

measuring 430 mm × 430 mm. As illustrated in Figure 15, CT 

provided multi-angular confirmation of the existence of a 

singular principal crack during the late strengthening phase to 

the necking stage. This discovery aligns with the crack type 

identified through unsupervised clustering analysis of STFT-

processed AE signals using the DBSCAN algorithm. The multi-

dimensional images obtained from CT scanning at different 

angles not only verified the presence of this principal crack but 

also enhanced the precision and reliability of the AE monitoring 

method. This synergistic use of CT imaging and AE signal 

analysis offers a reliable approach for verifying and 

understanding the crack patterns and their progression in the 

material under study. 

  
 

 

 

 

 

 

FIGURE 15: INDUSTRIAL CT IMAGE OF THE HYDROGEN-PRECHARGED SAMPLE CRACK EXPANSION 
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3.4 Convolutional Neural Network Model 
We did three sets of tensile experiments on hydrogen-

precharged specimens in the same experimental environment 

and experimental conditions, and processed the collected data 

as described above to train the STFT results using a CNN 

framework. CNNs are highly effective in audio processing and 

classification, particularly with STFT data in MAT format, the 

MAT format is a file format used by MATLAB software to store 

variables and data within MATLAB.  

CNN's convolutional layers extract local features from 

STFT data, akin to edges and textures in images. Convolution 

kernels slide over the STFT matrix, extracting spectral feature 

information. The following pooling layers reduce the feature 

map size while retaining essential information, lowering 

computational complexity and enhancing the model’s   

generalizability. Convolution and pooling layers are usually 

followed by fully connected layers that map the extracted audio 

features to the final output categories. Activation functions are 

applied after convolution and fully connected layers, with loss 

functions measuring model performance and prediction error. 

During training, weights and parameters are adjusted through 

backpropagation to minimize the loss function. 

The STFT results, a complex number two-dimensional 

array sized 128x61, were visualized in terms of magnitude, 

converting them into a real-number matrix for further 

processing. Using MATLAB's deep learning toolbox to 

construct the CNN model, the input data format required was 

[height, width, channels, samples]. The original data, a two-

dimensional matrix, was first transposed (data'), then reshaped 

to new dimensions of 61 (width), 128 (height), 1 (channel), and 

the number of samples. The data_4D array dimensions were 

rearranged using the permute function, changing the dimension 

order from [61, 128, 1, numSamples] to [128, 61, 1, 

numSamples] to match MATLAB's standard image data format. 

The CNN model comprised two convolutional layers, 

each followed by a batch normalization layer and a ReLU 

activation layer. These convolutional layers utilized 3x3 filters 

to extract features, with the first layer having 8 output channels 

and the second increasing to 16. Batch normalization layers 

after each convolutional layer accelerated training and 

enhanced model stability, while ReLU layers introduced the 

necessary non-linearity. Two max pooling layers with 2x2 

windows reduced the feature map size, preserving vital 

information. The fully connected layer mapped learned features 

to the output space of the classification task, followed by a 

softmax layer converting outputs to probability distributions. 

Finally, the classification layer outputted the model's decisions. 

The CNN was trained using the Adam optimizer, which 

adapts the learning rate. The initial learning rate was set at 

0.001, balancing training speed with convergence stability. 

Training was planned to complete within 20 epochs, each 

representing a full pass through the entire dataset. To prevent 

overfitting, the data were shuffled before each epoch. 

Additionally, the model's performance was evaluated on an 

independent test set every 30 iterations, continuously 

monitoring and validating the learning process. 

Labels were created for two data categories: intact 

structure (labelled 0) and crack (labelled 1). The data were 

divided into training set (64% for model training), validation 

set (16% for testing model accuracy while training) and test set 

(20% for testing model accuracy after training). The model was 

validated using the signals from the test set to observe how the 

experimental results of the proposed approach performed. The 

accuracy of the model recognition is the ratio of the correct 

number of samples to the total number of samples. The 

experimental performances of the models presented in this 

paper were assessed using this accuracy calculation method. 
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Analysis of Figures 16 and 17 revealed an improvement in 

model performance as training progressed. Model accuracy, 

represented by the blue line, showed an overall upward trend 

with increasing iterations, particularly in the latter stages of 

training. The final validation accuracy reached approximately 

98.32%, indicating a significant enhancement in the model's 

predictive capabilities. Concurrently, the loss value, depicted 

by the orange line, initially increased and continued to fluctuate 

throughout the training process, yet displayed an overall 

downward trajectory. This pattern suggests that the model was 

effectively learning and refining its predictions over time. 

 Notably, the consistent decrease in the loss value and the 

absence of an upward trend in this metric imply that the model 

did not suffer from overfitting. The model's performance on the 

validation set did not deteriorate due to excessive adaptation to 

the training data. Additionally, the smooth increase in the 

accuracy curve suggests an improvement in the model's 

generalization ability. These observations confirm that the 

developed CNN model effectively learned and predicted 

features in the STFT data, demonstrating robust classification 

performance. 

 

4. CONCLUSION 
This comprehensive study presents a novel approach to 

understanding the behavior of 304 austenitic stainless steel 

under hydrogen embrittlement conditions. The research 

employed AE monitoring in conjunction with a CNN to analyze 

the material's response to stress and potential damage. The use 

of AE monitoring, a real-time non-destructive testing technique, 

was instrumental in detecting changes in sound wave signals 

during the material's stress phases, particularly in critical stages 

like necking and crack formation [24]. 

The study's innovative aspect lies in its integration of AE 

monitoring with advanced machine learning techniques. By 

using the DBSCAN algorithm for unsupervised clustering of 

STFT processed AE signals, the research was able to effectively 

differentiate signals corresponding to various damage stages. 

This method provides a more nuanced understanding of the 

material's behavior under stress, offering a critical tool in 

damage detection and assessment. 

The CNN model with a multi-layered structure extracted 

fundamental features from the STFT data and accurately 

classified them. The model was validated using signal data 

from the test set, observing its recognition accuracy on the new 

dataset, with a validation accuracy reaching as high as 98.32%. 

CNN models excel at identifying patterns and features in 

complex data, hence they have the potential to capture the 

characteristics of crack nucleation from similar signals 

provided by both sensors. Notably, the model demonstrated 

robustness, showing no signs of overfitting, which underscores 

its potential for practical applications. 

With respect to the issue of specimen fracture in the non-

standard distance region, we recognize that this phenomenon 

stems primarily from the design of the specimen transition 

section being too short, resulting in stress concentrations. This 

design limitation may have affected the desirability of the 

experimental results, but we would like to emphasize that the 

validity of our data analysis methodology and associated 

algorithms has not been compromised despite this problem. By 

accurately distinguishing between cracked and normal 

structure data, our analysis was still able to provide critical 

material property information, and in particular showed 

significant value in determining the type of hydrogen damage. 

We plan to further optimize the specimen design in subsequent 

studies, especially by extending the transition section to reduce 

stress concentration effects. And we believe that these 

improvements will significantly enhance the accuracy of the 

experiments and the reliability of the results. In addition, we 

will also consider adopting more diverse materials and more 

advanced data analysis techniques to deepen our understanding 

of hydrogen damage behavior and validate our research results. 

In conclusion, this study represents a step forward in the 

field of material science and engineering [25-26]. It 

demonstrates the potential of integrating AE monitoring with 

CNNs and unsupervised clustering algorithms for effective 

material damage detection and analysis. While acknowledging 

its limitations, the study paves the way for future research that 

could further refine and enhance these techniques, ultimately 

contributing to offering a proactive approach to material failure 

prevention and risk management, safer and more efficient 

industrial practices.  
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