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Fooinotes SECTION 1.

Introduction

Due to population growth and urbanization, the demand for transportation in major cities worldwide has steadily
increased. The substantial volume of daily traffic exerts immense pressure on existing urban transportation
infrastructure [1], resulting in persistent traffic congestion [2]. Traffic signal control (TSC) methods are cost-effective,
easy to implement and adjust, so they are widely applied to solve traffic congestion problems in major cities around
the world. Classic TSC technologies include mature commercial software such as SCOOT [3] and SCATS [4], as well
as some optimization algorithms like genetic algorithm [5] and fuzzy logic [6]. Recently, POI embedding [2] and
swarm intelligent algorithms [7] have also shown some suceess in alleviating traffic congestion.

Reinforcement Learning (RL) is a machine learning approach that facilitates sequential decision-making. Over the
past few years, RL has found extensive application in the realm of TSC. In this context, RL models TSC as a Markov
Decision Process (MDP), wherein the agent gathers experience by engaging with the traffic environment and acquires
the ability to make action decisions based on the prevailing states, thereby striving to achieve the desired control
objective. RL algorithms generally include value-based (such as Q-Learning [8]), policy-based (such as REINFORCE
[9]), and Actor- Critic (such as A=C [10]) architectures. Methods based on Q-Learning have been widely applied. [11]
have adopted tabular Q-Learning in RL-TSC. Recently, deep neural net-works (DNNs) have been commonly used for



2023 International Annual Conference on Complex Systems and Intelligent Science (CSIS-IAC) | 979-8-3503-0900-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/CSIS-IAC60628.2023.10364020

2023 International Annual Conference on Complex Systems and Intelligent Science

October 20~22, 2023, Shenzhen, China

Network Clustering-based Multi-agent
Reinforcement Learning for Large-scale Traffic
Signal Control

Zhicheng Tao
College of Control Science and Engineering
Zhejiang University
Hangzhou, China
zctao @zju.edu.cn

Abstract—Reinforcement learning (RL) has proven successful
in the field of traffic signal control (TSC) within urban traffic
networks. Moreover, multi-agent RL. (MARL) achieves large-
scale TSC by distributing the global control to each local RL
agent. However, as the scale of joint TSC continues to expand,
MARL faces greater convergence challenges. In this paper, a
method combining network clustering and MARL is proposed to
address this issue. We apply the Normalized Cut (Ncut) algorithm
to effectively partition a large-scale traffic network, and then
adopt MADQN to complete TSC tasks for each subnetwork.
Meanwhile, a novel reward function based on impedance has
been adopted. The results demonstrate that our method has high
control performance and could effectively alleviate congestion in
large-scale network under peak-hour traffic conditions.

Index Terms—Traffic signal control, Multi-agent reinforcement
learning, Network clustering, Deep Q-network

I. INTRODUCTION

Due to population growth and urbanization, the demand for
transportation in major cities worldwide has steadily increased.
The substantial volume of daily traffic exerts immense pressure
on existing urban transportation infrastructure [1], resulting in
persistent traffic congestion [2]. Traffic signal control (TSC)
methods are cost-effective, easy to implement and adjust, so
they are widely applied to solve traffic congestion problems
in major cities around the world. Classic TSC technologies
include mature commercial software such as SCOOT [3] and
SCATS [4], as well as some optimization algorithms like
genetic algorithm [5] and fuzzy logic [6]. Recently, POI
embedding [2] and swarm intelligent algorithms [7] have also
shown some success in alleviating traffic congestion.

Reinforcement Learning (RL) is a machine learning ap-
proach that facilitates sequential decision-making. Over the
past few years, RL has found extensive application in the
realm of TSC. In this context, RL models TSC as a Markov
Decision Process (MDP), wherein the agent gathers experience
by engaging with the traffic environment and acquires the
ability to make action decisions based on the prevailing states,
thereby striving to achieve the desired control objective. RL
algorithms generally include value-based (such as Q-Learning
[8]), policy-based (such as REINFORCE [9]), and Actor-
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Critic (such as A2C [10]) architectures. Methods based on
Q-Learning have been widely applied. [11] have adopted
tabular Q-Learning in RL-TSC. Recently, deep neural net-
works (DNNs) have been commonly used for policy and value
approximation, thereby enhancing the ability of RL to handle
high state-action complexity. This approach that combines
DNN’s feature extraction capabilities with the RL mechanism
corresponding to environmental rewards is also known as deep
reinforcement learning (DRL). [12] applied asynchronous n-
step Q-learning to the TSC of a single intersection and reduced
the average total delay by 40%. [13] applied the Actor-Critic
algorithm to the TSC field, while [14] further proposed a novel
A2C-based algorithm and achieved scalable and robust TSC.

Recent studies have primarily focused on TSC problems at
the road network level rather than individual intersections. To
achieve large-scale RL-TSC, multi-agent RL (MARL) meth-
ods are a popular choice [14]-[16]. According to different pat-
terns of cooperation and competition between agents, we can
classify MARL methods into various paradigms. Decentralized
and centralized paradigms are the two most classic ones.
However, the former suffers from the issue of environmental
instability, while the latter encounters challenges related to
the explosion of joint state and action spaces. Corresponding
solutions have been proposed, such as CTDE [17]. However,
as the network size further expands, MARL faces inevitable
convergence challenges, leading to a significant decline in al-
gorithm performance. For large-scale RL-TSC, the mainstream
approach is to improve RL algorithms, e.g. [18]-[20], but
few have started from the segmentation of traffic networks.
In fact, most authors have not explained the standards and
methods used for partitioning traffic network cases. Assuming
there is a significant disparity in congestion levels among
road segments within a traffic network, it becomes evident
that the difficulty of TSC in non-congested areas is much
lower than that in congested areas. In such cases, the MARL
approach may prioritize non-congested areas, as they offer bet-
ter opportunities for improving global rewards. However, this
prioritization comes at the cost of exacerbating congestion in
already congested areas, leading to imbalanced optimization.
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