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ABSTRACT

Real-time assessment of drivers' cognitive states is critical for improving road safety, especially in freight
transport, where long-haul truck drivers frequently encounter prolonged fatigue and diverse traffic
interactions. Current Advanced Driver Assistance Systems (ADAS) primarily cater to passenger vehicles,
overlooking the distinctive challenges inherent to heavy trucks, such as delayed braking responses,
extended sensor fusion latencies, and drivers' reliance on roadway familiarity. To address this gap, this
paper proposes a Multimodal Attention Neural Network (MMANN) framework that integrates three
asynchronous data streams: vehicle kinematics, driver facial states captured via low-frequency imaging,
and driving environment videos. The proposed model utilizes interpretable attention mechanisms to fuse
multimodal data, facilitating the classification of cognitive states into low-activity (characterized by
distraction or fatigue), normal-activity, or high-activity (indicative of stress or aggressive driving). Trained
on an extensive 180-day naturalistic dataset, MMANN achieves an impressive recognition accuracy of 82.4%
- a notable improvement of 8.6% over single-modal baselines. This research pioneers the development of
adaptive cognitive models, specifically tailored to the unique operational patterns and environmental
constraints of truck driving.

Keywords: Truck Driving Behavior, Cognitive State Recognition, Naturalistic Driving, Multimodal
Information Fusion, Transformer
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INTRODUCTION

Advanced Driving Assistance Systems (ADAS), such as adaptive cruise control, forward collision
warning (FCW), lane departure warning (LDW), speeding warning, and automated emergency braking, are
designed to enhance safety by either alerting drivers to potential hazards or by taking over certain driving
maneuvers (1). These features are important for the successful deployment of autonomous vehicles in the
future (2). While ADAS can assist with driving tasks, until fully mature autonomous driving is achieved,
drivers need to be cautious in case any of these systems fail to respond or disengage (3,4). Therefore, real-
time monitoring of driver cognitive states can significantly enhance driving safety through proactive risk
identification, particularly for commercial vehicle operators and long-haul truck drivers engaged in
prolonged transportation missions (5).

The effectiveness of some ADAS, such as FCW and LDW systems, has been evaluated in various
studies (6,7). Some efforts have also been made to explore the key factors influencing drivers’ acceptance
of advanced features. Previous studies indicated that partially autonomous driving systems often result in
passive fatigue, reduced vigilance and insufficient cognitive load, all of which negatively impact drivers’
performance in critical situations (8). Moreover, drivers' attention can be diverted when using conditionally
automated driving systems, as they may engage in non-driving-related tasks, thereby reducing situational
awareness (9). A few studies used self-reported surveys and physiological indicators to investigate changes
in drivers’ cognitive status during partially and conditionally autonomous driving (10,11). Prior studies
utilized self-assessment tools such as NASA-TLX (12) for cognitive state evaluation and MMSE (10) for
workload measurement. Some were conducted by providing drivers with a test vehicle to capture and
evaluate driving behavior (13). While these studies provide insights on driver interaction of advanced
features, they are limited to selected scenarios, and drivers are susceptible to memory biases, which reduces
their ability to accurately estimate their own cognitive state. In general, the behavioral differences between
drivers operating vehicles equipped with ADAS versus those without ADAS have not been thoroughly
investigated through naturalistic driving studies.

To avoid the limitations of the above subjective measurements, psychological, physiological, and
behavioral datasets including eye movements, galvanic skin response, heart rate, head rotation, and vehicle
states were widely employed (14). Changes such as in pupil movement, facial features, and vehicle
acceleration can be recorded by sensors and other sources to infer drivers’ cognitive state (15,16). Some
studies also analyzed patterns of brain electrical activity measured using electroencephalography (EEG) to
estimate drivers’ levels of stress, attention, and alertness (17). Each individual measure has its advantages
and limitations. Drivers’ cognitive state (e.g., attention, fatigue) can affect takeover performance (18).
Therefore, it is important to accurately identify drivers’ cognitive state in partially autonomous vehicles
and incorporate it into the design of the fallback procedure (19).

Traditionally, vision, text, audio, and kinematic data have been examined within distinct domains
(20, 21). However, this fragmented analytical approach is insufficient for understanding the intricacies of
driver behavior. Drivers engage with traffic through a multi-sensory modality, where diverse information
streams are processed and interpreted by specialized brain regions to form a complex yet cohesive sensory
loop (5). This biologically-driven sensory integration requires the development of computational
frameworks capable of emulating the brain's adaptive fusion hierarchy.

According to the relevant literature review, several critical limitations emerge: 1) Previous studies
have predominantly relied on physiological data, e.g., EEG, eye tracking, interface pressure, and heart rate.
However, collecting such data in naturalistic driving scenarios is both invasive and technically challenging.
2) The naturalistic driving datasets currently available suffer from a small participant pool, which may lead
to a statistical over-representation problem. 3) Single-modal data architectures lack the capacity to detect
drivers' complex cognitive-load state with sufficient accuracy and timeliness. Furthermore, current ADAS
research predominantly focuses on standardized scenarios derived from passenger vehicle operations,
overlooking the unique challenges inherent to commercial truck driving. The prolonged operational cycles
of freight transportation induce cumulative cognitive fatigue that existing passenger-oriented models fail to
quantify. Compounded by the complex interactions in mixed traffic environments (e.g., vulnerable road



O©CoO~NOoO O, WN -

36
37

38

user detection during urban freight distribution), these factors necessitate the development of specialized
cognitive state assessment frameworks.

To address the research gap in commercial vehicle safety, this study focuses on exploring
multimodal driving data feature extraction, fusion, and cognitive state recognition. Initially, the study
conceptualizes driver activity as a complex interplay of various cognitive structures, each influenced by
factors related to the driver's state (e.g., maintaining situational awareness during autonomous driving) and
driving-related factors (e.g., consuming cognitive resources to perform driving tasks) (22,23). Building on
this conceptual foundation, the framework systematically integrates three asynchronous data streams of
vehicle dynamics, driving environment information, and driver facial features obtained from non-invasive
devices. Meanwhile, the multimodal data fusion method is used to estimate the driver’s cognitive profile,
which was often estimated by physiological and/or psychological indicators in previous studies. Moreover,
this study explores naturalistic driving data of heavy trucks when driving with FCW and overspeed warning
in urban, rural, and freeway scenarios under varying traffic flow, lighting and weather conditions. Thereby,
the proposed framework bridges the knowledge gap between passenger-centric ADAS research and the
safety demands of commercial freight transport.

DATASET

The naturalistic driving dataset utilized in this study specifically focuses on heavy trucks equipped
with Advanced Driver Assistance Systems (ADAS) operating in Guangzhou Province. During the data
acquisition phase, comprehensive vehicular operational data, including geolocation tracking information,
real-time vehicular operational metrics, safety alert logs, forward-facing visual recordings, and driver-
facing camera feeds, were systematically transmitted to the cloud infrastructure.

The ADAS system in these vehicles incorporates multiple safety features, including Forward
Collision Warning (FCW), lane-departure warning, and real-time monitoring of the driver's facial status.
The facial monitoring system provides alerts for fatigue, distraction, and abnormal behaviors such as
smoking or phone usage. Given the heterogeneous nature of multimodal driving data, FCW events were
selected as the primary observational samples in this study due to their unique integration of three critical
components: driver states, vehicle operational parameters, and roadway situational contexts.

The cloud platform records alarm events with a set of data streams, including the alarm time (Ty,),
vehicle driving status data, environmental data, the driver's facial image at the time of alarm, and vehicle
front video (as illustrated in FIGURE 1). The data streams were recorded at varying frequencies: 1fps for
facial images captured via infrared cameras, 10Hz for vehicle dynamics through radar signals, and 10fps
for driving environment video. Each modal dataset encompasses driving data from 5 seconds before the
warning to 5 seconds after the warning initiation time, providing a comprehensive temporal context for
analysis.

FIGURE 1 Multimodal data sample. (SV: subject vehicle ; FV: front vehicle)
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9,453 original warning data segments from 569 heavy trucks were collected over a 180-day period
from January 1 to June 30, 2023. TABLE 1 shows a set of sample data. After data preprocessing, 3,519
valid FCW events were extracted (u = 6.2 instances per vehicle). Considering the potential impact of driver
states (e.g., fatigue, distraction, stress), this study conducted a comparative analysis of the trigger time
between FCW and other warnings. Based on this analysis, a preliminary classification framework was
established, comprising three distinct categories of FCW warning:

1) Distraction group: system detected > 2 fatigue or distraction warnings within 300 seconds prior
to FCW activation.

2) Normal group: no significant fatigue, distraction, or abrupt acceleration/deceleration warnings
were detected before or after FCW activation, with driver behavior parameters remaining within normal
operating thresholds.

3) Driver stress group: temporal overlap (At < 3s) between FCW activation and abrupt
acceleration/deceleration warnings, indicating concurrent aggressive driving behaviors during FCW events.

TABLE 1 Main characteristics of the dataset

. Driver | Warnin Relative Front Vehicle L
Time Index ID Label ’ Speed(km/h) Distance(m) Speed(km/h) Heading(®)

1 77 0 66.4 11.7 67.2 112

2 77 0 66.6 11.3 65.8 113

3 77 0 66.8 10.9 65.4 112

51 77 1 63.8 7.8 61.6 122

52 77 1 62.4 7.4 60.3 124

53 77 1 61.7 6.5 59.8 125

Reaction time was calculated through comparative analysis of the acceleration and relative velocity
(speed differential between subject truck and leading vehicle) curves (24). FIGURE 2 shows a sample of
the curves of subject truck acceleration and relative velocity over time. For each extremum point (local
minima/maxima) of the relative velocity R, , there is a corresponding extremum point (local
minima/maxima) of the acceleration R,. The temporal peaks correspond to warning initiation and driver
response, and the time between them is the reaction time T,..

|.Tx|
R, ! | R, Relative Speed

SV Acceleration
0.6 Fos

0.2 Foz2

0.0

F-0.2

0.2 s . - |
° 2 3 P o
¥ » & & F

Time{s)

FIGURE 2 Reactioh 'time determination

METHODOLOGY

In this work, a transformer-based framework ‘Multimodal Attention Neural Network (MMANN)’
is proposed, which consists of a feature extraction module designed to capture driving behavior, drivers’
states and environment, along with a fusion module to integrate multimodal data. This section begins by
outlining the problem definition and modeling approach.
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A. Problem Definition

Driver activity was applied to characterize the complex cognitive structures of drivers during FCW
events. A primary objective of driver activity estimation is to assess whether the driver can respond
promptly and execute appropriate risk avoidance measures when encountering hazardous situations.
Consequently, the driver activity recognition task is framed as a time series classification problem, with the
driver activity level serving as the designated label: ¥; € {0,1,2},where 0 = low-activity level, 1 = normal-

activity level, 2 = high-activity level, given the multimodal temporal sequences X! of size [.As this
classification, low-activity means fatigue driving or distraction driving state, for example, the driver's
attention resources devoted to driving tasks are reduced due to fatigue or non-driving related tasks; normal-
activity means normal driving state, at this time, the driver's attention is concentrated and the environmental
pressure is appropriate; high-activity means aggressive driving or stressful driving state, for example,
drivers of ' road rage ' tend to ignore some environmental information to overdrive. Therefore, the problem
is to generate the corresponding driver activity level §; based on temporal series information as

V. = . l | —

i argng%gg{z}p(y,lX,) J=12,..,N 1)
Xt =1 x1,%9, 0, %1 ] 2
where

j is the j" sample,
N is sample size,
x represents the feature at each time step.

Multimodal temporal information consists of front camera video M! and driver's facial images G'
obtained by camera sensor, vehicle kinematics K obtained by on-board sensors, denoted by X! =
MY, GLKY , and x =[m,g, k] respectively. Specifically, k = [v,a,As,Av] represents the
velocities/accelerations of the truck, and the relative distance/velocity with respect to the front one,
respectively.

B. Model Construction

The MMANN model, as shown in FIGURE 3, presents a multimodal fusion architecture. First,
MMANN passes each modal data to its dedicated feature extractors: 1) Multi-channel Video Vision
Transformer (MCViViT) model for videos, 2) Convolutional Neural Network-Vision Transformer (CNN-
ViT) model for images, and 3) an Attention-BiGRU (AT-BiGRU) for driving kinematics. Then, the features
extracted from the three models were fused using One-to-Two (OvT) attention layers. At the same time,
this layer learns attention weights to decide the importance ratio for each modality. Last, the Multilayer
Perceptron (MLP) outputs a multi-classification result of driver’s activity level.

FIGURE 3 Overview of the MMANN model
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Driver State Feature Extraction

In recent years, Transformer model has become the first choice for natural language processing
(NLP) tasks, especially working together with the self-attention mechanism. Vision Transformer (ViT)
applies to image processing, which involves dividing image into blocks, and then processing these linearly
arranged block sequences as the input. In this context, the concept of image blocks is similar to the concept
of tokens in NLP tasks. FIGURE 4 illustrates the structure of an improved ViT module for feature
extraction of multi-channel images of driver’s state.

FIGURE 4 Workflow of the CNN-VIiT model ( W,: query weights; W: key weights; v,,,: attention
center and span embeddings; r;;: relative position encodings; o:sigmoid function; w: gating parameter)

In the CNN-ViT Model, given an input image denoted as GeR™*"*C it is reshaped into a sequence
of flattened patches, denoted as GﬂateRN*PZ*C, where H, W, C and P represent the height, width, number

of channels, and the size of the image block respectively, and N = H;ZV represents the number of image

blocks. Subsequently, each block is linearly embedded into a low-dimensional feature space, and an
additional position embedding is added to the patch embedding. The embedding process can be expressed
as follows:

Eo = Lypos + [GfracLs GAiaeLs - GhigeLs oo GflaeL] (3)
where
Gf1q¢ is the i patch,
L is the linear embedding function,
Ly Is the position embedding function,
E, is the output of the embedding operations.

Then E,, is transmitted to Local Transformer (LT) layer and the extracted local features E; are sent
to the Standard Transformer (ST) layer, the extra class embedding is added, denoted as Ejycq1 = [Geass; Eil,
and E ;4. represents embedding class label. Driver state feature representation Lat¢ is generated through
ST layer.

LT and ST contain a sequential array of Transformer blocks, and the total number are D; and Dy,
respectively. Each ST block contains a Multi-head Self-Attention (MSA) block, followed by a MLP block:

E} = MSA(LN(0g-1)) + E4—4 ,1=12,..,D (4)
E; =MLP(LN(O))) +E; ,1=12,..,D (5)
where
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LN represents the normalization function,
E4 and E; correspond to the output of MLP and MSA blocks, respectively.

In the MSA layer, each self-attention head h performs the following operations:

MSA,(G) = ARGwh (6)

where
W is the value matrix,
A is attention matrix.

In LT block the MSA with positional self-attention (PSA) is used to replace the self-attention layer
to achieve local perception, that is, A" is replaced by A?], and could be defined as:

T T
Al = softmax(QFK[" + Vlbs 1)) @)
Each attention head h uses a trainable embedding Vp’},s € RPros, and the relative position encoding
UTRS RPros represents the relative position between the patch i and j. Its size depends only on the distance

between the pixels i and j . When the PSA layer contains h attention heads and the relative position coding
dimension D,,s = 3, the PSA could be regarded as a convolutional layer with a convolution kernel size of

vh x +/h , and the network pays more attention to local features.

Driving Environment Feature Extraction

The input video generates a large number of spatio-temporal tokens, and the context of the long-
range annotation sequence and the efficiency of the model must be considered. Based on ViT, this paper
expounds the structure of an improved multi-channel ViViT module, which is used to extract driving
environment features. The tubelet-embedding method is used to map the video M into a sequence of tokens

fii. Given a video input, denoted by Me RT*H*W+*C  defining t € R*"W of the tube t , then n, * n;, *
n, sequences 7 can be obtained, # € R™* W C |, =Z, ny, =K, ng =2 Then, position
t w t

embedding and class embedding are added to each sequence token 7, and the input tokens m € R¥*4 to
the following Transformer is acquired. Compared with the uniform sampling method in ViT, sequence
constructed in this way can better fuse spatio-temporal information.

FIGURE 5 Workflow of MCViViT model

FIGURE 5 presents Transformer-based spatial encoder and temporal encoder structures. First, the
spatial encoder models the interaction between tokens extracted by the same time index, a representation
h; € R® for each temporal index is obtained after L layers. Then h; are concatenated into H € R™*¢, and
forwarded through the temporal encoder consisting of L; layers to aggregate the representations from
different temporal indices, and corresponds to the late fusion of spatial-temporal information. The output
token of the temporal encoder is the feature representation of the driving environment feature extraction
Lat™.
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Driving Operational Feature Extraction

Vehicle dynamics data is often constructed as multivariate time sequences that contain various
driving behavior characteristics for optimal utility. RNNs have achieved great success in speech recognition
and language translation. To enhance the learning ability of sequence data, researchers proposed two
effective variants: LSTM and GRU. Considering the characteristics of driving operation data, this study
employs BiGRU to capture the two-way dependence of time sequences, and uses the attention layer to
highlight important time indicators. The internal information transmission and network structure are shown
in FIGURE 6.

FIGURE 6 Workflow of AT-BiGRU model

Driving operational data is the input of the attention layer and assigns weights to the input of the
BiGRU layer. The greater the weight, the more important the data at that time step, which means ‘attention’
is focused here, and will affect the final result of the entire problem. The attention calculation formula is:

w, = softmax (k¢ h, + by)

{5 = Z:il wy hy ®)
where
h; is the hidden layer output of BIGRU network at a certain time,
b and k are bias and weight respectively,
T, is the total length of driving behavior sequence,
S is the final representation vector of attention layer.

Bi-GRU obtain feature vectors from both back and forward directions. GRU calculates the feature
vector transmitted by attention layer and outputs a vector with a fixed dimension. Inside the GRU unit,
there are four parts of calculation:

re = oW * [he_y, s¢| +by)
ze = o(Wy * [he_q, s¢| +by)
hy = tanh (W7, * [y * hye_15c.] + by)
he=(1—2z)*hey+2 % he
where
o is the sigmoid function,
tanh is the hyperbolic tangent function,
s¢ IS the input vector of the GRU layer,
h; is the output vector of the GRU unit,

1 is the reset gate state vector,
z; is the update gate state vector,

©)
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Wand b correspond to the weight vector and the bias vector respectively.

Since the input is the whole time series, the characteristics of a certain moment depend on both the
previous information and the future information at that moment. The calculation formula is as follows:
Latf = [hi, h{] (10)
where
LatX is the output of BiGRU layer at time ¢,

h 1is the hidden state of forward propagation,
h 2 is the hidden state of backward propagation.

Fusion of Modalities

Many multimodal models rely on self-attention or cross-attention for effective data integration, but
do not scale well for applications with more modalities. Hence, an improved OvT attention mechanism is
utilized (25) to understand the relative importance of each modal (in FIGURE 7).

Given an embedding mode m; obtained from a dedicated encoder, m;eLat™, Lat®, LatX |
calculate the similarity between this mode and the combined representation of all other modes. The
calculation formula is as follows:

Ty Ztzi ™
score(m;) = m; W? (11
Mgee; = sof tmax(score(m;) x m;) (12)
where
Mg, 1S the feature representation of m; after fusing other modal information,
W is weight matrix can be learned,
k is number of modes, andi € 1,2, ..., k.

FIGURE 7 Workflow of multimodal fusion model

Output Classifier Layer

As in FIGURE 3, the multi-modal fusion feature representation mg,, is input into MLP, and
confidence value of each class is output to form final prediction $, = 0 : low-activity level of the truck
driver, . = 1 : normal-activity level, §, = 2 : high-activity level. Then, the confidence Y of the batch
training prediction is compared with the true label to calculate the loss and back propagation. Once trained
the model predicts classes based on the highest confidence score.

C. Model Training and Evaluation

Training was performed on a Nvidia RTX 3070 GPU. The dataset was divided using stratified
random sampling implemented via Python's scikit-learn library, and class distribution was preserved
through the 'stratify’ parameter. Through data shuffling and two-stage splitting, samples from each driver
activity level were allocated to training (70%), validation (10%), and test (20%) sets. Adam optimizer was
selected for training with a maximum of 150 epochs and a batch size of 24, a learning rate (Ir) of 1 x 107>
and a learning rate scheduler named CosineAnnealingLR. CrossEntropy, an advanced loss function for the

10
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multi-classification problem, was also applied with label smoothing (26,27) as loss metric. Label smoothing
can reduce the harm caused by overfitting and overconfidence in model training, i.e., alleviates the troubles
caused by wrong labels on model learning. The formula of Cross-Entropy is as follows:

L= —Z y; log(softmax(x;)) (13)

where
x is the output of the model,
y is the true label with the form of one-hot.
When using Label Smoothing, the formula can be changed as follow:

L e =—> ¢ log(softmax(x;)) (14)

where

l-w, y;=1
4= {Lw ,otherwise’
N-1

N is number of classes,
w is hyperparameter and tends to be a small numeral.
In thismodel, N =3, w = 0.1.

For operation feature extraction, each of one attention layer and two BiGRU layers has a hidden
dimension of 32. All features are uniformly resampled to 10 Hz and normalized to the same scale. For
driver state feature extraction, the two raw images of each driver are unified into 256256 to avoid data
misalignment during model training. For driving environment feature extraction, the videos are sampled at
10fps. The hyperparameters selected for the CNN-ViT model and the MCViViT model are as follows: 1)
CNN-VIT: the number of patches is 16, the last dimension of the output tensor after the CNN-VIT module
is 64, and the number of LT and ST blocks is 2 and 2, respectively. 2) MCViViT: the last dimension of the
output tensor after the ViViT module is 128, the number of ViViT Transformer blocks is 4, and 3) the
number of heads in the MSA layer is 3.

To evaluate the proposed model’s performance, metrics such as accuracy, precision, recall, and F1
score were used. Each metric can be calculated by the following formula. Among them, TP, TN, FP and
FN refer to the number of true positives, true negatives, false positives and false negatives, respectively.
For multi-classification, macro-averaging rules are required for Precision, Recall, and F1 calculations.

Accuracy = L — (15)
TPtZN+FP+FN
Precision = (16)
TEP+FP
Recall = (17)
TP+FN
F1l = 2><Pre'c1.swn><Recall (18)
Precision+Recall
RESULTS

In this section, the driving operational feature, driver’s state features and driving environment
feature extractors of FCW events in trucks are evaluated. Different evaluation metrics, inference time, and
ablation study are employed to analyze the model performance.

A. Statistical Analysis

A total of 3,519 FCW records were screened over a 180-day period. Several variables such as road
type, front vehicle type and traffic flow density were applied. The classification of traffic flow states is
primarily utilized based on the quantity and velocity of preceding vehicles detected by the forward-mounted
radar in naturalistic driving vehicles (28). Specifically, the low-density is defined as the number of
preceding vehicles fewer than 3 and the speed greater than 60km/h; the medium-density is that the number
of preceding vehicles is 3-5 and the speed is 30 km/h-60 km/h; the high-density is that the number of
preceding vehicles is more than 5 and the speed is less than 30 km/h.

11
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As shown in TABLE 2, the selected heavy trucks are mostly driving on highways or freeways,
where drivers are more likely to show distraction, and on urban or rural roads, drivers are more likely to
drive aggressively. The alert time of the distracted group mostly occurs in the early morning or night (after
22:00 hours, the group exhibited the highest standard deviation (SD)). Most of the vehicles in front of the
distracted group are also trucks. At this point, the driver's front vision may be obscured, so the driver
remains conservative while driving. When the vehicle in front of the driver is a passenger car, less-
obstructed vision can induce drivers’ reliance on his/her driving habits and ignore warning signals. The
absolute values of yaw angle and SD in the distracted group are the smallest, indicating that the driver’s
operation of the steering wheel is weakened at this time, and it is easy to ignore the warning signals at this
time, while the driver’s stress group may maneuver more frequently to try to change lanes, resulting in a
larger steering wheel angle. Based on the above statistics, the following conclusion could be drawn: 1)
Drivers are more likely to be distracted when traffic density is low and vehicle speed is high. Drivers often
avoid frequent acceleration and deceleration maneuvers by maintaining a longer distance from the vehicle
in front, and the driver has a longer reaction time. 2) When driving on urban or rural roads with complex
traffic conditions, drivers react more quickly and adjust their speed more frequently.

TABLE 2 Statistics of FCW record data characteristics

Variable Distraction Normal Driver stress
Avg! SD? Avg SD Avg SD
Warning time(0-23h) 8.50 6.77 13.69 4.59 13.86 5.36
Reaction time(s) 2.14 0.49 1.16 0.74 0.86 0.37
Speed(km/h) 57.34 14.25 54.27 14.76 51.65 12.73
Acceleration(m/s?) -0.11 0.18 -0.13 0.23 -0.21 0.16
Yaw angle(rad/s) -0.20 1.98 0.06 2.28 -0.25 2.52
Relative distance(m) 11.63 4.50 9.64 5.86 8.77 4.35
Relative speed(m/s) 0.34 0.33 0.38 0.46 0.56 0.26
Variable Type Count Pro® (%) Count Pro (%) Count | Pro (%)
1(Highway) 312 52.0% 915 46.9% 423 43.8%
Road type | 2(Urban road) 207 34.5% 585 29.9% 348 36.0%
3(Rural road) 81 13.5% 453 23.2% 195 20.2%
Front 1(Passenger 206 34.3% 955 48.9% 570 59.0%
vehicle car)
type 2(Truck) 394 65.7% 998 51.1% 396 41.0%
Traffic 1(I__ow) 321 53.5% 795 40.7% 165 17.1%
density 2(Middle) 213 35.5% 792 40.6% 348 36.0%
3(High) 66 11.0% 366 18.7% 453 46.9%

1Avg: average; 2SD: standard deviation ;*Pro: proportion

B. Driver activity level

In the preliminary analysis, eight variables (e.g., reaction time, average speed/acceleration) were
associated with the driving activity level. Principal component analysis (PCA) was used to extract features
from highly correlated variables, and k-means++ was used to cluster the extracted principal components.
First, KMO test and Bartlett sphere test were carried out to prove that conditions of PCA. As shown in
TABLE 3, the first four principal components explain 83.4 % of the total variance, indicating that these
components can represent most of the original data information and play a role in dimensionality reduction.
Therefore, four principal components Com; ¢ .34 Were extracted as Fy, F,, F3, F, , respectively. The
coefficients of each index can be solved according to the principal component score and the component
matrix coefficient, and the principal component coefficient matrix was obtained. From the perspective of
the coefficient values, F; is mainly positively correlated with the average/maximum acceleration. F, is
positively correlated with spacing, negatively correlated with yaw angle. F; is positively correlated with

12



O©COoO~NOoO O, WNPE

19
20

21
22

23
24
25
26
27
28
29
30

the road type and reaction time, and negatively with the vehicle speed. F, is positively correlated with traffic
density and acceleration. In order to make a more accurate assessment of driving activity, F;, F,, F3, F,
obtained by the above PCA are selected as indicators, and K-means++ is utilized for clustering. The elbow
method helps to determine the optimal number of clusters (FIGURE 8(a)).

Based on the elbow curve, driver activity could be divided into three levels: low-activity, normal-
activity, and high-activity. As shown in the statistical box plot of each class (FIGURE 8(b)), F;and F;
value distributions in clusterl are the lowest, however, mean of F, is highest with this cluster. Drivers tend
to maintain a long front gap to prevent sudden violent deceleration, and driver's control behavior of the
steering wheel is weakened, indicating that the driver is usually in a driving environment with fewer
surrounding vehicles, and has a longer reaction time at this time, so this clusterl could be seen as the ‘low-
activity group’. Similarly, cluster2 and cluster3 can be regarded as ‘normal-activity level” and ‘high-activity
level’, respectively. The statistical values in the box plot provide a categorical indication that the actual
velocity, acceleration, and other values in the warning segment will be dynamic within and between classes.
On the basis of identifying driver activity labels, the proposed MMANN model can be trained to achieve
efficient recognition of different driver activity levels through multi-modal input features.

TABLE 3 Driving activity variance interpretation and component matrix

Initial eigenvalue Principal component score . .
Component Eig! Pro? cum? = > F3 N Primitive variable
Coml 2283 | 0.295 | 0.295 | -0.171 | 0.140 | 0.504 | 0.147 Road type

Comz2 1.806 | 0.226 | 0.521 | 0.276 | 0.529 | 0.143 | 0.115 Relative distance
Com3 1.429 | 0.177 | 0.698 | 0.244 | -0.382 | 0.137 | 0.104 Mean yaw angle
Com4 1.066 | 0.136 | 0.834 | 0.671 | -0.279 | -0.084 | 0.334 | Mean acceleration
Com5 0.502 | 0.059 0.893 0.787 | -0.348 | -0.035 | 0.411 Max acceleration
Com6 0.408 | 0.048 | 0.941 | 0.241 | 0.098 | -0.458 | -0.156 Mean speed
Com7 0.334 | 0.040 | 0.981 | -0.224 | 0.175 | -0.217 | 0.607 Traffic density
Com8 0.155 | 0.019 1 0.211 | -0.096 | 0.281 | -0.488 Reaction time
!Eigenvalue ;?Proportion;*Cumulation

Sunt of the Squared Errors
g # 8 B 8 3 B
>

b

& B W0
Number of Clusters

(@) (b)

FIGURE 8 Driver activity level classification (a) elbow rule (b) classification results (values are
normalized).

C. Model Performance

FIGURE 9 depicts the loss and accuracy curves for both the training and validation sets across
epochs. The model's performance on the training set continues to improve, while the validation set
performance plateaus after approximately 60 epochs. To mitigate the risk of overfitting and enhance the
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model's generalization capability, an early stopping mechanism is implemented. This mechanism halts
training when the validation error increases consecutively for 10 epochs. FIGURE 10 presents a confusion
matrix based on the test set, which provides insights into the model's predictive accuracy for different
activity levels. The precision scores for low, high, and normal activity levels are 0.867, 0.838, and 0.796,
respectively. The model excels in differentiating between the distracted state and the stress-driven state.
Consequently, the model can effectively identify the abnormal driving states of drivers.

Train-Val Loss

Train-Val Accuracy
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FIGURE 9 MMANN model training and validation loss and accuracy variation over epochs
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FIGURE 10 Confusion matrix of MMANN model on testing set
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In real-time applications, computer vision systems in ADAS applications require at least 10 FPS
(frames per second) (29). To evaluate performance, the timing of each scene was measured, simulating the
continuous processing of the real world on an extended sequence without interruption to reduce
inaccuracies and overhead due to timing functions and data transfers. The average time per frame and FPS
are as shown in FIGURE 11. In terms of scalability, these models are designed to process video clips of
the driving environment 5 seconds before a warning is issued to perform driver activity estimates. In
deployment, the model will use a fixed window corresponding to the length of the test video to ensure real-
time performance.
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FIGURE 11 Model real-time operation. (Time: average time to process one frame; MMNN: model
without OVT attention layer; w/o: without.)

D. Model Comparison

A group of learning-based models used for sequence data such as DTW-KNN (30), LSTM (31),
TCN (32), and FCN (33), is employed for comparison. The driving behavior matrix, which consists of the
speed, acceleration and spacing of the main vehicle in the 5s before warning, is used as the input of each
model. FIGURE 12 shows a performance comparison on various single and multimodal models in terms
of Accuracy, Precision, Recall and F1 Score.

The multimodal model demonstrates superior performance compared to single-modal models. The
results indicate that the proposed MMANN model surpasses other baseline models across all evaluation
metrics. The driver's facial image effectively captures the distribution of the driver's synchronous attention,
while the driving environment video indirectly reflects the driver's cognitive load at any given moment.
The MMANN model validates the effectiveness and feasibility of multimodal data fusion for identifying
driver activities.

DTW-KNN exhibits the least performance, highlighting the advantages of machine learning in
handling complex and high-dimensional time series data. Among the models, FCN and LSTM-FCN yield
promising results, indicating that convolutional networks have potential in time series data analysis and
modeling. This underscores the capability of the MMANN model to leverage multimodal inputs for robust
driver activity recognition.

1.0

== CNN-VIT
& MCVIWIT
—e= DTW-KNN
o W oy p— . [ma
’ —=- TCN
e Tt SIS R el
 —HH e T S = FCN
ol 2 = _._a.h..._..,’.z_l.g:.‘_'__:.;.E_._-,_.,.,.-..-._u}. B ISTM-FCN
: . ... . MMNN
e e R R e + s e = e+ . i MMANN
044
0.2
0.0 T T — T
Accuracy Recall Precision F1
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FIGURE 12 Performance of multimodal model and benchmark models.

E. Ablation Study

An ablation study involves removing certain components of the network to better understand its
behavior and causality. In this experiment, vehicle dynamics were taken as the baseline data, and the driver's
state feature extraction module, driving environment feature extraction module and multimodal attention
module were tested in ablation to determine the significance of specific network components. Without the
inter-modal OvT Attention module, the feature representations extracted from these three modalities are
directly concatenated and fed into the MLP for classification. This implies that the importance of the
features extracted from each modality is considered uniform (the impact on driver state recognition). The
results for these 7 models are shown in TABLE 4.

Overall, the MMANN model outperforms the six ablation models in terms of accuracy, precision,
recall, and F1 score, confirming the necessity of multi-source data fusion. The results indicate that the
driving environment and the driver’s state characteristics are effective supplement to the driver’s activity
recognition. In a single-mode, the driver's operational data excels in recognizing the driver’s activities,
while the recognition reflected in video features and images of the driver’s face is often less optimal.
Multimodal fusion significantly improves the accuracy of driver activity recognition.

Table 4 Results of Ablation Study

Model Accuracy | Recall | Precision | F1-score
MMANN 0.8236 0.8326 0.8203 0.8253
w/o OvT Attention | 0.8117 0.8166 0.8127 0.8144
w/o ConViT 0.7957 0.7925 0.7928 0.7926
w/o MCViViT 0.7787 0.7796 0.7896 0.7836
AT-BiGRU 0.7375 0.7238 0.7051 0.7138
MCViViT 0.6336 0.6309 0.6430 0.6357
ConViT 0.5769 0.5710 0.5322 0.5253

(w/o: without)

Given that driver activity is a complex physiological phenomenon, constructing a robust driver
activity recognition model using unimodal data is challenging. Facial images mainly reflect the general
level of concentration during the driving process, but do not provide insights into the specific processing of
the driver’s driving environment information, or confirm whether the driver pays enough attention.
Although the front video of the driving environment offers a clear understanding of the surroundings, it
does not reveal the driver's internal state while processing this information. In addition, driving operation
data is objective, but multi-dimensional data is necessary for accurate identification.

The fusion of information from different modalities can provide valuable information for
comprehensively evaluating driver activities, indicating that multimodal fusion better simulates the
unconscious behaviors and cognitive states of drivers in various driving scenarios. This multimodal
approach enriches the data representation, leading to more accurate and reliable activity recognition.

DISCUSSION

The 'black-box' nature of deep learning models leads to drivers distrusting their ability to evaluate
driving cognitive states. To explore the interpretability of the model, this paper attempts to visualize and
analyze different feature extraction modules. For example, for the feature extraction module of driving
manipulation behavior, the data outcomes of the attention mechanism are visualized.

As shown in FIGURE 13, the longitudinal axis represents the average attention value, showcasing
the manipulation behavior feature vector of drivers across different driving activity levels on a single time
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step. Temporal attention distribution of the input features is uneven, exhibiting a clear bimodal phenomenon,
where the attention weight at the end of the evaluation time window is not the highest. Moreover, the closer
the bimodal distribution of attention weight is to the boundary of the evaluation window, the less redundant
timing information is introduced by the model, indicating that a 5-second time window length is more
reasonable. From the perspective of the change rule of driving state, the driver's complex cognitive state
will be evaluated by multiple perceptions of the external traffic environment, rather than a single perception.

| high-level 1 MNormal-level 1 low-level

u: 0 ? i

o o
o v
=] w

=]
W

Pe—

Average temporal attention weight

1 2 3 4 5
Time (s)

FIGURE 13 Temporal Attention Distribution of Driving Manipulation Feature

For the driver's facial features and driving environment feature extraction module, Gradient-
weighted Class Activation Mapping (Grad-CAM) (34) is used, which can use the average gradient of the
target layer to highlight important areas, and achieve visualization of the deep learning network recognition
process through heatmaps.

FIGURES 14 and 15 display the feature map of the last convolutional layer before the pooling
layer of each feature extraction module. Different modules focus on different types of significant
information, including the driver's face, the type and quantity of the front car, the lane where the car is
located and the ground signs on the lane. This focus aligns closely with intuitive human judgment,
demonstrating that the model possesses the ability to learn valuable information.

For example, when evaluating the front video of a high activity group driving, the area of concern
is larger and evolves over time. Initially, the model focuses on scattered vehicle information. As the subject
vehicle approaches the front vehicle, the model increasingly focuses on the distance to the front vehicle.
This change in focus is consistent with human driving, where vehicles are controlled according to the type
of the front vehicle and the distance between them while following. This analysis underscores the model's
capability to adapt its attention in a manner that reflects human-like cognitive processes.

FIGURE 14 Visualization of Driver Facial Feature
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FIGURE 15 Visualization of Driving Environment Feature

CONCLUSIONS

The objective of this paper is to devise a multimodal feature learning method for the real-time
analysis of drivers’ cognitive states. This study aims to identify whether drivers in intelligent vehicles
exhibit cognitive deficit or heightened concentration, due to stronger cognitive ability or a lack of trust in
ADAS. To this end, a novel driver cognitive state estimation framework is developed through multimodal
fusion (MMANN). The effectiveness of this framework is rigorously validated using a naturalistic heavy
truck driving dataset, which spans 180 days and encompasses a wide array of road types and traffic
conditions.

Through observational analysis of truck drivers during Forward Collision Warning (FCW) events,
the cognitive state of drivers can be categorized into three distinct levels: low activity, normal activity, and
high activity. Drivers exhibiting low activity frequently experience monotony and distraction,
demonstrating reduced sensitivity to external stimuli and exhibiting longer reaction times (Mean = 2.14s,
SD = 0.49). Conversely, highly active drivers are susceptible to stress or overconfidence, often neglecting
certain environmental cues and engaging in aggressive driving behaviors. Comparative analysis with the
benchmark models and ablation experiments reveals that reliance on unimodal data is insufficient for
constructing a robust driver activity evaluation framework. The integration of diverse modal information
significantly enhances recognition accuracy, furnishes more comprehensive insights for evaluating driver
activities, and underscores the efficacy of multimodal learning approaches.

It is foreseeable that multimodal fusion can effectively simulate the unconscious behavior and
cognitive states of the driver in various driving scenarios. Additionally, employing a multi-level attention
mechanism allows for the highlighting of crucial moments and key module feature information while
reducing the computational complexity of the whole network. These findings have important implications
for enhancing driver safety and improving ADAS performance.

Recommended future work could explore different fusion schemes, as well as the evolutionary
mechanisms of driver activity and its multimodal characteristics. This could involve investigating
alternative methods for integrating multimodal data, understanding how driver behaviors and cognitive
states evolve over time, and identifying new multimodal features that could further improve the accuracy
and reliability of driver state recognition systems. Such research could pave the way for even more
advanced and effective ADAS technologies, contributing to safer and more efficient driving experiences.
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Abstract: Anomalous driving behavior recognition includes three levels: definition, identification, and explanations. This paper
reviews the research progress of anomalous behavior recognition and prediction, with the focus on recognition methods based on driver
intentions and states, probability statistics driven by multi-source data in autonomous driving environments, neural networks, deep
learning anomaly recognition and prediction methods, and analyzes the advantages or disadvantages. Then the study proposes a hybrid
unsupervised deep learning model on lane changing events, mining explicit and implicit abnormal behavior patterns. Based on
trajectory datasets, experimental analysis was conducted, and the results showed heterogeneity in the distribution of anomalous driving
states among drivers, as well as characteristics such as vehicle angular velocity and headway. In addition, the hybrid unsupervised
attention mechanism model does not require prior knowledge and thresholds, and shows good robustness and self-learning ability,
providing ideas for accurately and efficiently identifying anomalous driving behavior in autonomous driving environments.
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Fig.1 Driver’s Intention Classifications
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Tab. 3 Methods of Driving Behavior Recognition and Prediction
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Fig. 2 The Framework for Anomalous Lane-changing Behaviors
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