ETERUATTNER B S: 20250854478

B -1
AL TR (HIXE TIEIF=M)
HTERUARTFNELS

- ERF

L= 22260275

AR TIEIPERFRE Al 2] (Sugh) - {5 B

AT TIRVMERE GRiIARZETIEIMFER)

20255F05H29H



1HZR1 PR

o RIS FRHE SR ISR B A R R AL R
 ETIHHRESNE, HERELE,

S RGN B A, 5 I TR
WU, A4UELETHTED

=\ RPN LWL LT BEEKE, R
BT, A HTHAE

P AT R0 A PP = L2 5 i DA A Be 3RS
G S NN SR AT+ B TREITHARR Ll S5 (4 4

PE+HRAK 36, 1147,



(—) ZAXEL (B (WL TREMER WL RETEMER) TEREWEMFARET
BIMRARPPESERR) , ST (GU) TREIMBAR P A SChR e, 2461 i ]

L X ATMVERNE W HIR TN AR IR ERF I (2 TF2007)

TR B, ARG Y ] 75 TR A Z A KFIEAEIL 5Z0H AR, FEARE RS
T, TR, #HEe. MARRS. MBS NS, CHERR 77
, IRE GEE TEAUKRI . e BUER] . B PR SIS, JFRe N H WiTanarin, Tsabe
1e&E THX Tk REMATE S I0UE. #d 2 NI HINZ, TAMNE 7RIS
AR AR AR, RS TR R A SR R GAT ARIRE ST . Ak, FRIGEIE T Pyth
on. LaTeXZE4mfe 5 R T B, NELHEWTS THE TAET T 7 1RSI,

2. THESEBRPEZ T (R >F200F)

HEZ 5245 T AGHRPRE TRIH, W TSI e R g2 et 22
WA B L2 A P BOB SIS 7 1] o

R RGN AT E o, BT HIR ML A S O %, Bt IFsesl 7B
AR, ASIE GRS AT & R B 22 o

5 —DIH T, JA A BRI AZRIGUENESL, X — A SERRAE RS A7 BEAEERE
AEHEAT IR, PRIE 1 H OB 22 e VR R AL

BeAh, WiEZSH5HE T AT I PR IR LS A48 5 MU K Se I T RAT R, . A
MG T TRESKEC S AR T . IX 2 Py AR 1 A SRR R ot SR 7y, W
IEREERZIM B | T RGBS 2R

3. FESERs T PR A B AT RN RE R TREAEN RS (2T 10007)

ERNGF TN RG22 AERES, BRASH - DNRETZ2MB0E IR 3 311 i
FARBFEIE o %50 H 18 B Ll S — AN 2R A E——

AR v 25 A L B0 A P 285 3845 B SO 22 4, UL a8 A R B O TSR 5| 1R 22 A VI
Z A AE TV 6 ZE . el E . BRATRE . VBRI =) 2 A77E, JFH—HXK
A A in @, JERTRENCAME ., Bk, e iGE TR S AR, R LA S
bR RS TN EEF R AMmEgEAeiiE TR BEREK, (BT TS B3k
FEFEA, PR 7 AR T A2 v H

FERBF R IR, a7 BRI SuE T H, 40 ProVerif 1 Tamarin

Prover, ¥ ERH T30 HRE S MEMGITE (W1 RFC

) FHACNTE A . X — IR m AN 258, AU 9% 77, 1 HL2A 5 R B O
ZSPUENHR . UHBAESEER TP H B 4% SO % H B & RSy e 4i = i i
SN, XM CeFENTT” 17 SO0 DL R UL IS UE B R R . BRI, ek EE AR Gl
RE(ESEHO I TR W USCER IR, A2 3R AT B T 6T A B S AR kK

HNRPRIX— 8, RESHOAEBRES I, AL Tk 22 4 s 7 TH R &,
SR I — AR T ORE S (LI FEh 2 il fF S 8 5 3 A o . 3R
120 AR — B B ARE S B BT IS UE RTS8 0 B sh e mAs, DAL RS A
R T E AT I, $R TR B0 UEAE T2 Sk i m] F AN

HAEH, ZFEAES LTI RER AL, Bo, R T PR THESTEBEEENE X
FRMTHEZE, fEBHRIESHM (WIGPT) XS SRS AT G M TE LMt AR TG T
Mg EC 7 5, LLM




SeME T HARE S b BSOS SRR AR (0 S R PR RE /T, AT RE SE AR5 B A
AR (NS 5% HE. YD L 4 Aneimie) MErE AERFR) o fEbTah R
Fedgon— R e FRoniE ., BTSSR e, alsitiam, HE Tt DA,

Bk, WIAINTHEESSSZLEAEEIE], X R R s 1% PR BRI T
MBS IE. A Par DR T B AL St A7 58 A A B O, A AN s i FE BE B 48 2 re ik
WOREE AN R T it . A5, TR 7T — ey, WhFRREiN Sapict

MIEIE S, X2 M3 Tamarin Prover

PP BERE S . &a, BidwmEmiEasdift, ¥ Sapict b — DYk Tamarin
AT N AT S A, I AR O AR R i SR AT T IR, B DR S SUER BV

WX IH , AP RIE A RAE T % 851 VAR S R G 2 2R HT 1
LREIsH, G 7 TRESEE T T 2 BSEE, A OO A IS USRI B R
FIBREIIATIRGE . X EPRAE IR LA = 2], KA AR MU TRET N TR, fEAER
e TRESEHL AR BEZANRMILER . &%, 278 TR 7 — R
i S AERR R R MG BARB) TR, AREAE T IHET, RIS i 2 e rriEhe




(2D BBHNES (REME  [REEH, FURSEHFEF (REREWRI. HRKEE. €5

EF . REUESS. RO E LB AR SIVIERS) s, HFRESEH—4]

1

AFFRIAREME [RE. SHRER. KAEFIEN. ARSIl T, SRS, A

BRIRE ., A ]

BRI . X " 7NN
e b, R (o | PORMB PRI o)
JRARAAFR ROPERRE) | ek | AEH | SRR |, I\ #E
MR dRE. Lok, M [ as | seng e | 2
3R EArg ) i
47th
Internatio
LLM-aided Automatic nal
Modélling for TOPHAT] 20254F04 | Conference /5 ET& 130
Security Protocol Ha7H on XK
Verification Software
Engineerin
g
Quantitative Runtime The ACM
i i 2024504 ET1<1%
Monitoring of ' TOPEATI & Web 97 2Pk
Ethereum Transaction H28H Conference K
Attacks 2025
28th
Internatio
Applying Rely-— nal
Guarantee Reasoning Conference
s p o 2023509 | on Formal ET2= 0K
PNEIVEVN
on Concurrent Memory e A26H Methods 2/5 3
Management and for
Mailbox in MC/0S-11 Industrial
Critical

Systems




2. RAAERAE [ERBSE5HREMATE . RBRRENASEARE . SVEREEERTR. B
FERR B HI EEEL. BRI S BTHEIAR. R AR WATEB RS . RIS
£\ BLERRRE . TEZR. BARFIER . #ITLRE T RERER KRB 2R

%]




(=) ERIHARREE. T MLSLBRIZR K AW SR

GG O LRI A AT RS 84 &y

LRI
o i 1 g CERIERDLE)
e RS 83 4

TAFZ P AEER)
ANKE

MAFEY: AN ERFHEBBAREAY oFER, BARE—-VIRE
, RRILATEY !

YCTRE S




= HERIZZENEBERMRERARER

IEE ML HEE FITEZIAN . 52 AL B BT TAE AL

i Ormg O  DOFREH%
BB RIM/ EAERELERANIENIEF (A

H% R
ERVPN

ﬂﬁﬁ%%#,Iﬁﬁ#%ﬁﬁ$ﬁkﬁﬁﬁﬁﬂ%§%§g

PIPR | s M AR RS FATIE, BAARERINT:

EHAT
na mEte: O AEER
TERLREEEEBHATTRET (AF) .

BREMST. Tl

SEERYIGRR A R S0, RBIESRE) | IR EERI BR R

)
£ A H




W L K % B % %&£ B
HOETL B e R

255 TrRmme:

F5: 22260275 4. BT el 5 il BTFER P
BV I RACRLSR: 24, 025y CIR1G: 26. 0550 +4. 054y (ARMEIRER) AR 2022-09 NG IER
ERLIERS EVIEH S RT AL

)1 1) IR 2R RYE | 50| WGt | RAEHER 2 1) IRFE AR SEEN RS | AR R
2022-2023F FAKFEW | Tk TR A4 % £ RTARA 20 94 FAEEIR |2022-2023 % B H ¥ | B TAZIAans 3.0] 88 Tl SR
2022-2023 % FEKE M | TIREAR BIRRIA 1.5 88 B AR |2023-2024 % 4E X2 | “IUh” £ Lol 88 AR
2022-2023% FAKFFM | DA TR % 4 R TR 2.0 83 FALFERIR |2024-2025 4 FEHEF W AT S0 1.0l 94 AFLELR
2022-2023 1K) RS B 2.0 71 RS [2024-2025 54 AF T | 0T G2k BV 18D 6 33T 2.0 84 A hATY
2022-2023°FAERRAEW) | WFR 1 SCE (R 1.0 87 TR [2022-2023 FAE KA (IR IR S LLA (BBA-T3 THEIR) 10| 100 ABHER
2022-2023 % F X TEM] | B AC R B R & OB SR 2.0 89 AIEAR|2022-2023 % EHHEH KBNS SHE (BE-BTHEH 1.0| 100 REER
2022-2023% FAKZ 5 | Toll R 40 5h A B SR AR R AL 2.0 93 FALEEAR |2023-2024 FE KL R BN S L BER-BFHEHO Lol 100 FEAER
2022-2023 ¥ FE R | AR R BRI 1.5 88 FA AR |2023-2024 ¥ 4E HEHEH | ABISSHE BLM-FTHER 1.0| 100 FEER
2022-2023 A AR | Kb 2.0 60 ik g Tk 2R P A 2.0] ik
2022-2023 FAEAFZREW] | AR BHIE I M 1.0 77 AP g Ak

B 1. IO R R AT R )
Bkt BRAE o
2. K w7 FoREBREE.

BN, PG GBI, D, HZGH (. B .

FERE BN«

RN TKBIK

STENEI M. 2025-0603

t




2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE)

LLM-aided Automatic Modeling for Security
Protocol Verification

Ziyu Mao!, Jingyi Wang'*, Jun Sun?, Shengchao Qin?, Jiawen Xiong?
! Zhejiang University, Hangzhou, China
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Abstract—Symbolic protocol analysis serves as a pivotal tech-
nique for protocol design, security analysis, and the safeguarding
of information assets. Several modern tools such as TAMARIN
and PROVERIF have been proven successful in modeling and
verifying real-world protocols, including complex protocols like
TLS 1.3 and 5G AKA. However, developing formal models for
protocol verification is a non-trivial task, which hinders the wide
adoption of these powerful tools in practical protocol analysis.

In this work, we aim to bridge the gap by developing an
automatic method for generating symbolic protocol models using
Large Language Models (LLMs) from protocol descriptions in
natural language document. Although LLMs are powerful in
various code generation tasks, it is shown to be ineffective in
generating symbolic models (according to our empirical study).
Therefore, rather than applying LLMs naively, we carefully de-
compose the symbolic protocol modeling task into several stages
so that a series of formal models are incrementally developed
towards generating the final correct symbolic model. Specifi-
cally, we apply LLMs for semantic parsing, enable lightweight
manual interaction for disambiguation, and develop algorithms
to transform the intermediate models for final symbolic model
generation. To ensure the correctness of the generated symbolic
model, each stage is designed based on a formal execution model
and the model transformations are proven sound. To the best
of our knowledge, this is the first work aiming to generate
symbolic models for protocol verification from natural language
documents. We also introduce a benchmark for symbolic pro-
tocol model generation, with 18 real-world security protocol’s
text description and their corresponding symbolic models. We
then demonstrate the potential of our tool, which successfully
generated correct models of moderate scale in 10 out of 18 cases.
Our tool is released at [1].

Index Terms—Automatic modeling, Symbolic analysis, LLMs

I. INTRODUCTION

It is notoriously hard to design and implement security
protocols. Among the variety of methods for analyzing se-
curity protocols, symbolic methods play an important role in
security protocol verification. Many protocol verifiers, such
as TAMARIN [2] and PROVERIF [3], have been developed to
formally analyze the correctness and security of a protocol,
based on a symbolic model of the protocol. The effectiveness
and usefulness of these tools are evidenced by the verification
of large-scale real-world protocols such as TLS 1.3 [4], 5G
AKA [5], and EMV payment [6], which have uncovered
critical and subtle security vulnerabilities.

* Corresponding author.
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Fig. 1: Overall workflow for symbolic protocol analysis.

However, applying these tools in practice can be costly,
as a user must first develop a formal symbolic model of the
protocol, which requires not only expert knowledge about the
protocol design, but also deep insights (as well as modeling
skills) of the corresponding verifier. Take TAMARIN as an
example. The overall workflow of protocol analysis is shown
in Figure 1. To use TAMARIN, one must first develop a
model of the security protocol in its input language (multiset
rewriting rules). To do that, a user must first build, in the
mind, an abstract model from the protocol document (e.g.,
IETF RFCs), and then encode the model using multiset
rewriting rules which characterize a labeled transition system.
Furthermore, the security properties ¢ to be verified must be
encoded in first-order logic (FOL). The validity of verification
results depends on whether the multiset rewriting rules and
properties are modeled correctly, as well as, subtle choices
made during the modeling, e.g., an untyped message in a rule
may cause TAMARIN to treat their outgoing messages as input,
leading to the non-termination of backwards reasoning [7].
To be fair, TAMARIN and other similar tools certainly made
significant effort to make their modeling language accessible,
and yet the difficulty in developing the symbolic model limits
the application of these tools to ordinary users.

In this work, we aim to address this practical challenge by
developing a method to generate symbolic models required
by tools such as TAMARIN automatically. Note that there
were previously some attempts with similar goals [8], [9],
[10]. What makes this work different is that we integrate
the capability of large language models (LLMs) into a multi-
step approach and adopt a much more powerful intermediate
modeling language. Note that although LLMs have shown
remarkable capabilities in multiple ‘less-formal’ tasks like

642



Quantitative Runtime Monitoring of Ethereum Transaction
Attacks

Xinyao Xu"
Zhejiang University
Hangzhou, China
xxinyao.Xu@zju.edu.cn

Xingwei Lin

Ziyu Mao®
Zhejiang University
Hangzhou, China
maoziyu@zju.edu.cn

David Basin

Jianzhong Su
Sun Yat-Sen University
Zhuhai, China
sujzh3@mail2.sysu.edu.cn

Jun Sun

Zhejiang University ETH Zurich Singapore Management University
Hangzhou, China Zurich, Switzerland Singapore, Singapore
xwlin.roy@gmail.com basin@inf.ethz.ch junsun@smu.edu.sg
Jingyi WangT
Zhejiang University

Hangzhou, China
wangjyee@zju.edu.cn

Abstract

The rapid growth of decentralized applications, while revolution-
izing financial transactions, has created an attractive target for
malicious attacks. Existing approaches to detecting attacks often
rely on predefined rules or simplistic and overly-specialized models,
which lack the flexibility to handle the wide spectrum of diverse
and dynamically changing attack types.

To address this challenge, we present a general and extensible
framework, MoE (Monitoring Ethereum), that leverages runtime
verification to detect a wide range of attacks on Ethereum. MoE
features an expressive attack modeling language, based on Metric
First-order Temporal Logic (MFOTL), that can formalize a wide
range of attacks. We integrate a novel semantic lifting approach
that extracts system behaviors relevant for various attacks, which
can be analyzed using the monitoring tool MoNPory. Furthermore,
we also equip MoE with quantitative capabilities to evaluate the
similarity between a transaction and an attack formula to enhance
its performance in identifying attacks, including near-miss attacks.

We carry out extensive experiments with MoE on a labeled bench-
mark and a large-scale dataset containing over one million transac-
tions. On the labeled benchmark, MoE successfully detects 92.0%
attacks and achieves a 45.0% higher recall rate than competing
state-of-the-art tool. MoE finds 3,319 attacks with 95.4% precision
on the large dataset. Furthermore, MoE uses quantitative analy-
sis to uncover 8% additional attacks. Finally, the average time for

*Xinyao Xu and Ziyu Mao contributed equally.
fJingyi Wang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1274-6/25/04

https://doi.org/10.1145/3696410.3714682

monitoring a transaction is less than 23 ms, positioning MoE as
a promising practical solution for real-time attack detection for
Ethereum.

CCS Concepts

« Security and privacy — Web application security.
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1 Introduction

In the realm of blockchain and smart contract technologies, the
decentralized application (DApp) ecosystem has gained substan-
tial attention [22-24]. Smart contracts are now widely used, in
particular in the financial sector [9], and manage a wide range of
assets [18]. Ethereum, the driving force behind these applications,
has witnessed a remarkable increase in its market capitalization [1].
Such milestones underscore the vast potential of this ecosystem,
marking it a key area of development in the world of digital finance.

Unfortunately, this surge has also brought forth a darker reality:
transaction-level attacks, which result in illegal financial gains on
Ethereum, are becoming a trend [18]. The ValueDeFi incident[13]
exemplifies the severe impact of such attacks, where an attacker
exploited the MultiStables library via a flash loan, causing a loss
of 6 million USD [13]. Recently, innovative transaction-level at-
tacks such as call injection and sandwich attacks have emerged,
undermining transaction integrity and manipulating market out-
comes [4, 25]. Specifically, call injection attacks perturb smart con-
tract operations by altering function calls, resulting in unauthorized
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Applying Rely-Guarantee Reasoning
on Concurrent Memory Management
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Abstract. Real-time operating systems (RTOSs) such as uC/OS-II are
critical components of many industrial systems, which makes it of vital
importance to verify their correctness. However, earlier specifications
for verification of RTOSs often do not explicitly specify the behavior
of possible unbounded kernel service invocations. To address the prob-
lem, a new event-based modelling approach is recently proposed to treat
the operating system as a concurrent reactive system (CRS). Besides,
a respective parametric rely-guarantee style reasoning framework called
PiCore is developed to verify such systems effectively. Witnessing the
advancement, we conduct a case study to investigate the use of PiCore
to compositionally verify two important entangled modules of a prac-
tical RTOS pC/OS-1I1, i.e., the memory management module and the
mailbox module. Several desirable safety properties regarding the mem-
ory pools and mailboxes are formally defined and proved with PiCore (&
2500 lines of specifications and proof scripts in Isabelle/HOL) based on a
formal execution model considering the two modules simultaneously. We
also discuss the shortcomings of PiCore for our case study and present
possible improvement directions.

1 Introduction

Real-time operating systems (RTOSs) are the fundamental basis to support real-
time applications. They provide a framework for effectively managing the exe-
cution of tasks and interrupts, ensuring that critical tasks are given sufficient
priority so that timing constraints are met. This is achieved by the cooperation of
several important mechanisms integrated within an RTOS: 1) scheduling mech-
anisms that determine whether and how tasks should execute, 2) mechanisms
for managing system resources such as memory and processing power, and 3)
inter-process communication (IPC) mechanisms that enable different processes
or threads to exchange information and synchronize their activities.

Nowadays, RTOSs are increasingly adopted in various safety-critical indus-
trial control systems, including aerospace, automotive, and medical devices.
Every single bug or vulnerability presented in the RTOSs can have far-reaching

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Cimatti and L. Titolo (Eds.): FMICS 2023, LNCS 14290, pp. 224-241, 2023.
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