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Graphical abstract
Abstract
The cell structure in vanadium redox flow batteries (VRFBs) critically impacts battery
efficiency. Therefore, in this study we evaluate the effect of different flow frames on VFRB cell
performance and system efficiency. This is accomplished through a multi-scale model combining a
3D model of the cell and an equivalent circuit model (ECM) of the stack. The results reveal that
during the discharge process, increasing the flow rate can boost the discharge voltage, but also leads

to higher pumping power consumption. Moreover, the pressure drop of the cell decreases as the



number of flow frame channels increases. Due to improved reactant concentration distribution, the
five-channel flow frame has a higher discharge voltage than other configurations at low reactant
concentrations, even exceeding that of the twenty-channel flow frame. The flow frame structure and
flow rate were optimized for a 10kW/40kWh VRFB with a genetic algorithm approach. Using a
five-channel flow frame, a peak discharge efficiency of 93.70% was obtained at a flow rate of 960
mL/min. The results of this study may aid future design of kilowatt-scale VRFBs.
Keywords
Flow frames; All vanadium redox flow battery; Multi-scale model; Genetic algorithm; Battery
efficiency
1 Introduction

With the rapid growth of clean energy sources such as solar and wind power, energy storage
technologies such as lithium-ion (Guo et al., 2023; Park et al., 2023; Guo et al., 2025) and flow
batteries (Zerrahn and Schill, 2017; Albertus et al., 2020; Lu et al., 2024) are receiving increasing
attention. In addition to benefits of long-duration energy storage and recyclability, flow batteries are
intrinsically safer than lithium-ion batteries, due to the non-flammable aqueous electrolyte used.
The flow field design critically affects the performance of flow batteries. For vanadium flow
batteries, elaborate electrolyte channels are typically carved in the electrodes (Yang et al., 2022;
Bhattarai et al., 2019) or bipolar plates (Zeng et al., 2019; Zheng et al., 2016); specially designed
flow frames are also used to regulate the flow field. The configuration of such channels has been
extensively investigated. For instance, Ali et al. (2022) compared the performance of serpentine and
interdigitated channels, showing that 2 mm serpentine flow channels resulted in higher cell voltage
and more uniform V2% concentration in the negative electrode. However, serpentine flow channels
also resulted in higher pump power consumption. Thus, Lu et al. (2021) optimized the discharge
power and system efficiency of serpentine flow channels, demonstrating power and system
efficiency that reached 16.73 W and 87.8%, respectively; these values were 2.85 W and 3.7% higher
than the conventional approach. Sharma and Kumar (2021) also improved serpentine channels with
two new designs: split serpentine and split-merged serpentine channels. Their experiments
demonstrated better electrolyte distribution in the split serpentine channel. Additionally, Gundlapalli
and Jayanti (2021) proposed a flip-flop directional split serpentine flow field, which demonstrated

excellent distribution and quick evacuation of product species. Their novel channel configuration



ensures scaling from 900 to 2200 cm? of active cell area.

Designing cells with large active area is becoming more common in industrial practice, but has
not been extensively studied (Ponce de Leodn et al., 2006; Sun et al., 2019). A large active area can
effectively reduce the number of cells in the stack, which is more conducive to VRFB applications
(Sun et al., 2019). Several cells can be connected to form a stack, enabling kW-scale VRFB systems.
In such systems, channels carved in the flow frames (instead of bipolar plates) are extensively
employed to reduce material costs (Kim et al., 2013; Delgado et al., 2022; Guarnieri et al., 2018).
However, this usually leads to kW-scale VRFBs having lower energy efficiency compared to
batteries employing laboratory-scale equipment (Kapoor and Verma, 2022).

Only a few studies have investigated the effect of flow frames and achieved kW-scale VRFBs.
For example, Kim et al. (2013) demonstrated a flow frame design in a 1kW/1kWh VRFB, with the
average energy efficiency reaching 82% at a low current density of 80 mA/cm?. And Guarnieri et al.
(2018) tested a 9kW/26kWh VRFB with 40 cells, in which the flow frames followed an equal path
length design.

In a typical cell, good electrochemical performance is always accompanied by an increased
pressure drop. However, the conventional equivalent circuit model (ECM) for VRFBs (Delgado et
al., 2022; Zhao et al., 2023) is unable to calculate this pressure drop. It also cannot represent the
dynamics of cell voltage during battery operation. For this reason, we propose a multi-scale model
which combines a 3D model of the cell with an ECM of the stack. Using this model, the effect of
different flow frames on the performance of a 10 kW/40kWh vanadium redox flow battery are
investigated. Varying structures are compared in terms of VRFB system efficiency and cell
performance.

2  Numerical modeling

2.1  VRFB description

As shown in Fig. 1, the studied VRFB consists of an electrical stack, two electrolyte storage
tanks, two pumps, and connecting pipes. The stack is comprised of multiple cells connected in series.
A cell consists of two porous electrodes and an ion exchange membrane between them. Two tanks
are used to store the anolyte and catholyte. During operation, electrolyte is pumped into the porous
electrode and electrochemical reactions take place. The reactions at the electrodes are described by

Egs. (1) and (2).



Positive electrode:
VO?* + H,0 — e~ 2 V0, + 2H* €))

Negative electrode:
V3t +e” 2 V2 (2)
The state of charge (SOC) is used to describe the relative amount of vanadium ions with

different valences, in both the porous electrodes and the tanks. It is defined as follows:
c (VZ +) 3 c (VS +)
c(Veota)  €(Votar)

where ¢(V2%) and c(V>*) are the molar concentrations of V2* and VO3, respectively, and

SOC = 3)

¢(Viota) is the total vanadium ion concentration in a given electrolyte.

Charge Discharge

s
—
! o !

Fig. 1 Schematic diagram of the vanadium redox flow battery

2.2 Description of the VRFB cell

In this work, a three-dimensional (3D) VRFB cell was constructed. The VRFB cell consists of
porous electrodes, current collectors, a proton exchange membrane, bipolar plates, and flow frames,
as shown in Fig. 2. Flow channels were carved into the flow frame to provide a steady electrolyte

supply. Three flow frames with different numbers of channels were compared in terms of flow field



and electrochemical performance. The 3D model enables detailed analysis of cell performance and
can act as a reference for design optimization. In the assembly and sealing of the cells, the channel
depth in the flow frames will be lower than the thickness of the electrodes. The width of the channels
and the position of the inlet were kept consistent for the three flow frames. The geometric parameters
of the VRFB cell are listed in Table 1.

Table 1 Geometric parameters of the VRFB cell

Parameters Value Unit
Cell height 300 mm
Cell width 600 mm
Channel depth 1.3 mm
Electrode thickness 3.5 mm
Membrane thickness 50 pum

1-End plate  2-Current collector  3-Bipolar plate 4-Flow frame 5-Porous electrode 6-Membrane

bipolar plate |
Positive electrode Membrane
;i‘::NEM ode “Q Sectl:on 3
i bipolar plate | Section 1

Inlet ! Section 2

Flow frame

Fig. 2 Schematic diagram of the components used in a VRFB cell
2.3 Governing equations
2.3.1 Fluid flow in the frames and electrodes
The flow of electrolyte is described by the Navier-Stokes equation:
p(u-V)u=—-Vp+ uv?u 4)

V-u=0 (5)



where u is the velocity of the electrolyte, p is the electrolyte density, u is the dynamic
viscosity of the electrolyte, and p is the pressure of the liquid.

The flow of electrolyte in a porous electrode is described by Darcy's law:

K
u=-—-—V (6)
VP

Where K is the permeability of the porous electrode. This permeability can be described by the

Kozeny-Carman equation as follows:
died

K=——"—
K(1—¢€)?

(7)
where K¢ is the Kozeny-Carman constant, dy is the fiber diameter, and ¢ is the electrode
porosity.
2.3.2 Ions in the electrodes
The ions in the positive and negative electrodes are mainly comprised of vanadium ions (V 2%,

V3*, V0%, V0F) and ion products from sulfuric acid (H*, HSO; , SOZ7). Each ion obeys the

following conservation equation:
i( )+ V- (=Df"Vc; — zjKFc;Vo; + uc;) = =S (8)
9t \EG joVG T ZKGECiVe T UG ) = =)
Here, j represents a particular ion, ¢; is the concentration of the ion, and Djef T denotes the

effective diffusion coefficient of the ion in the porous electrode; z; and k; indicate the valence of
the ion and the ionic mobility, respectively; F is the Faraday constant; ¢; denotes the ionic
potential in the electrodes, and S; indicates the source term of the ion.

Electrolyte solutions are electrically neutral, therefore:

szcj =0 9

J

The diffusion of ions in VRFBs occurs in porous electrodes, which differs from behavior in
free space. The ideal ion diffusion coefficients are corrected with the Bruggeman equation:
Djeff — 81'5Dj (10)
where D; denotes the diffusion coefficient of the ion in free space.
The source term describes how ion concentrations change in the electrolyte due to
electrochemical reactions or the dissociation of sulfuric acid, as shown in Table 2 (here, i denotes

the current density).

Table 2 The source terms of the conservation equation



Source term Positive electrode Negative electrode

Syz+ - V-i/F

Sya+ - —V-i/F
Sys+ V-i/F -

Sys+ ~V-i/F -

Sy —Shso; —2V - i/F — Spso;
Suso; SHso; SHso;

2.3.3 Transport in the membrane
In a proton exchange membrane, it is assumed that protons are the only mobile ions. The

current conservation equation can be expressed as follows:

0,
Ny+ = — n;am Vémem (11)

where Opem 1S the membrane conductivity, ¢pem 1S the membrane potential, and Ny+ is
the flux density vector of protons.
2.3.4 Electrochemical kinetics
The Butler-Volmer model was used to describe the relationship between current density and

overpotential during the electrochemical reactions:

$ 1- F ¢S F
J1 = AsFky(cys+) 1700 (cyst )™ [Eij exp (( @) ”1)— V! exp (—“1 ”)] (12)

v ReT Cys+ ReT
Cpax (1—a3)Fn, Cya+ azFn,
— (1-a3) a, |V _v —
Jo = AgFk,(cyz+) (cys+) [CV2+ exp ( R,T -~ exp R.T (13)

Here, J; and J, are the transfer current densities of the positive and negative electrodes
respectively; A is the specific surface area of the electrode; k; and k, are the reaction rate
constants; a; and a, are the charge transfer coefficients; s represents the liquid—solid interfaces
of the porous region; R, is the universal gas constant; 7'is the temperature; 7, and 7, represent
the activation overpotentials of the positive and negative reactions, respectively. n, and 7, are
defined as:

m=¢s—$—E (14)
N2 =¢s —h—E; (15)
where ¢ is the electrode potential, ¢; is the electrolyte potential, and E; and E, are the

standard equilibrium potentials for positive and negative redox reactions, respectively.



E;, and E, are expressed by the Nernst equation:

E, = E0+ Rli—Tln (c"sci—ci‘)z> (16)
E, = EO + Ieli—Tln (i::) (17)
where EY and EY are the positive and negative standard potentials, respectively.
The cell voltage is calculated as follows:
Eeen = Ef — 3 + "5 1n (W) — 11 =1, = [Rean (18)
Here, I denotes the discharge current of the cell, and R e is the cell’s resistance.
2.4  Model parameters
Table 3 and Table 4 list the relevant parameters used in the 3D model of the VRFB cell.
Table 3 Model parameters of the VRFB cell
Parameters Symbols Value Unit Reference
Total vanadium ion
. c(Veotal) 1700 mol/m?3 -
concentration
Initial proton concentration cO(HD) 4000 mol/m3 -
HSO; ion concentration c°(HSOy) 4000 mol/m?3 -
V2* diffusion coefficient Dyz+ 2.4 x 10710 m?/s (Lee et al., 2019)
V3* diffusion coefficient Dys+ 2.4 x 10710 m?/s (Lee et al., 2019)
V4t diffusion coefficient Dya+ 3.9 x 10710 m?/s (Lee et al., 2019)
V>* diffusion coefficient Dys+ 3.9 x 10710 m?/s (Lee et al., 2019)
H* diffusion coefficient Dy+ 9.312x 107° m?/s (Lee et al., 2019)
S0Z~ diffusion coefficient Dgpz- 1.065 x 107° m?/s (Lee et al., 2019)
HSO; diffusion coefficient Dyso; 1.33x107° m?/s (Lee et al., 2019)
J/(mol
Universal gas constant R, 8.3145 -
Faraday constant F 96485 C/mol -
State of charge SOC 0.8 - -
Kozeny-Carman constant Kok 9 - -

Density p 1354 kg/m3®  (Leeetal,2019)




Parameters Symbols Value Unit Reference

Viscosity U 4928 x 1073 Pa-s (Lee et al., 2019)
Specific surface area As 1.62 x 10* 1/m (Lee et al., 2019)
(Yuan et al.,
Carbon fiber diameter ds 1.76 X 1075 m
2020)
Electrode conductivity Oed 1000 S/m (Lee et al., 2019)
Porosity € 0.90 - -

Table 4 Parameters used in the simulation

Parameters Symbols Value Unit Reference
Positive rate constant kq 6.8 x 1077 m/s (Lee et al., 2019)
Negative rate constant k, 1.7 x 1077 m/s (Lee etal., 2019)

Positive transfer coefficient aq 0.55 - (Lee et al., 2019)
Negative transfer coefficient ay 0.45 - (Lee etal., 2019)

Positive standard potential E? 1.004 \% (Lee et al., 2019)
Negative standard potential EY -0.255 A" (Lee etal., 2019)

2.5 Boundary conditions

The structure of the flow frame has a critical impact on the performance of the VFRB cells. In
this study, the VRFB performance was tested for three different flow frame structures, as illustrated
in Fig. 3. The walls of both the flow frames and the porous electrodes were assumed to satisfy no-
slip boundary conditions. The positive and negative electrolyte flow rates were kept equal and
ranged from 240-1080 mL/min. The mass flow inlet and outlet pressure boundary conditions were
defined for the flow frames. The current density used in the discharge simulation was 105 mA/cm?.
The system temperature was held at 293.15 K. The equations governing the 3D numerical model of

the cell were solved using COMSOL Multiphysics® software.

Inlet
Inlet _ Inlet . H ‘| — - - |

r—:.'*"—u—"r—:.'—"Lu—‘"::—"I

Outlet

|I
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— —
Outlet Outlet
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Fig. 3 Flow frame designs for the numerical simulation

2.6 Mesh independence analysis

Effective mesh division can improve the computational efficiency and accuracy of simulations.
The 3D model of the VRFB was therefore investigated for mesh independence. The model was
mainly divided into tetrahedral meshes, and the mesh was refined in corners and areas of complex
flow, as shown in Fig. 4. To verify the independence between the simulation results and the number
of meshes, four different mesh numbers were selected for comparative simulations. The mesh
number increased proportionally from 1.15 x 10° to 1.22 x 107, with the obtained results shown
in Fig. 5. Considering both the computational cost and accuracy, a mesh number over 6.20 X 10°
was used for future comparison and discussion. We also compared structured and unstructured grids
to validate the effectiveness of unstructured grids in this context. Fig. S1 shows the structured grid
for Channel 1, and Fig. S2 compares the results of structured and unstructured grids. Both methods
produce essentially the same results, showing that unstructured grids can flexibly and accurately

treat complex geometries.

Fig. 4 Mesh refinement in the corners
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Fig. 5 Grid independence analysis



2.7  Multi-scale model of the VRFB

In the ECM of the VRFB, each cell is simplified to consist of a series-connected internal
resistance and a controlled voltage source, where the internal resistance (R;,;) is comprised of the
component resistance and the contact resistance between components. The voltage of the controlled
source is obtained by linear interpolation of the cell model simulation results under different
operating conditions. The resistance of the porous electrodes and the proton exchange membrane
are calculated in the cell model, so R;,; represents only the resistance of the bipolar plate between
the cells. The ECM uses the Simscape block in MATLAB to construct a circuit model with parallel
and series ohmic resistors connected to controlled voltage sources (represented as cells of the
VRFB), and a constant current source (used to simulate constant current discharge).

Shunt currents are generated by the flow of electrolytes in the stack manifolds, which form
paths between individual cells connected in series. The paths can be simplified to equivalent

resistances in the ECM. These resistances are calculated using Eq. (19):

_l
T oA

(19)
where [ is the effective length, A4 is the cross-sectional area, and o is the electrolyte

conductivity. R Rncj, Rpm]., and an]. denote the equivalent resistances of the electrolyte in

pc;»
the positive channel, the negative channel, the positive manifold, and the negative manifold,
respectively, and j represents the j® cell in the stack. The electrical conductivity o depends on the
SOC of the solution in each cell (Trovo et al., 2019):
0, = SOC - gy2+ + (1 —SOC) - o3+ (20)
op = SOC - ays+ + (1 —SOC) - gys+ (21)
where g, and o}, is the catholyte and anolyte conductivity, respectively.
Additionally, species are exchanged between the stack and the tank during battery operation.
The mass balance of the VRFB model is based on the following assumptions: (1) The electrolyte is
completely mixed in the pipe, stack, and tank. (2) The charge loss during battery operation is caused
only by the shunt current. The transport of species across the membrane is not considered. (3)
Electrolyte parameters such as density, viscosity, and mobility remain constant during battery

operation. (4) Flow rate differences between cells are not considered.

The ion concentration in the tanks is determined by the flow rate and the ion concentration at



the stack outlet. The concentration in the tanks is calculated using the following equation (Han et

al., 2024):

d C_tank

Q
14 — C;tack _ C'tank (22)
dt Vtank( ' ' )

where 2™ is the concentration of the valence vanadium ion i in the tank, Q is the flow rate
of the stack, Viank is the volume of electrolyte in the positive/negative tank, and ¢S is the ion

concentration at the outlet of the stack.
The concentration in the cell is controlled by both the flow rate and the electrochemical reaction.
Moreover, it is assumed that the concentration distribution in the cell varies linearly, which is

expressed as follows:

cellave;
J
dCi — Q (C_tank _ Ccelloutj) + I] (23)
dt MVcell ' ! B ZFVcell
cellave; cellin; cellout;
; J = (cl. T+ ’) /2 (24)
M
stack _ cell;
c; = Z ¢, /M (25)
j=1
cellin]- celloutj Cellave]- . . .
Here, c; s € ,and c, represent the average concentrations of the i-valent ions

at the inlet, outlet, and the entire cell within the j cell, respectively, M is the number of cells, z is
the unit activity coefficient, F' is Faraday's constant, Ve is the volume of electrolyte in the cell,
and I; is the charge/discharge current that flows through the /™ cell (I > 0 for charging). The sign
of the value is determined by the species. When i equals 2 or 5, the value is positive; when i equals
3 or 4, the value is negative.

Therefore, the multi-scale model of the VRFB can be represented as shown in Fig. 6. I}, is the
total discharge current of the stack. The parameters used in the multi-scale model are shown in Table

5. The currents and voltages in the circuit are calculated using Kirchhoff's law.

Fig. 6 The multi-scale model of a VRFB with 40 cells

Table 5 Parameters used in the multi-scale model of the VRFB



Parameters Value Unit Reference Meaning

Bipolar plate resistance

Rint 1.6E-7 Q -
between cells
(Moro et al.,
Oyz+ 27.5 S/m V2% solution conductivity
2017)
(Moro et al.,
Oy3+ 17.5 S/m V3% solution conductivity
2017)
(Moro et al.,
Oys+ 27.7 S/m V4t solution conductivity
2017)
(Moro et al.,
oys+ 413 S/m V5* solution conductivity
2017)
Electrolyte volume in the
Viank 0.75 m? -
tank
Electrolyte volume in the
Veenl 0.00063 m? -
cell
In 0.008 m - Manifold length
A 491E-4 m? - Manifold area
I, 189 A - Stack discharge current
(Ali et al.,
Ypump 0.9 - Pump efficiency
2020)

3 Results and discussion

A major goal of this study is to analyze how the flow frame structure affects the VRFB
performance. A properly distributed flow field in the porous electrodes of a VRFB cell can improve
the battery performance. Hence, battery performance across different flow field distributions was
investigated in terms of discharge voltage, pressure drop, and vanadium concentration. Finally, the
effect of flow frame structure on system efficiency was analyzed using the multi-scale model of the
VRFB. Given that mass transfer and electrochemical reactions in the positive and negative

electrodes are essentially similar, only the negative electrode was used for comparative analysis.



3.1 Model validation

To validate the accuracy of the cell model, the discharge data from a single cell with an
electrode size of 600 mm x 300 mm was tested. The initial and final vanadium ion concentrations
were quantified by potentiometric titration to determine the corresponding state of charge (SOC).
Constant current density discharge tests were conducted on the single cell experimental platform
(shown in Fig. 7). During the experiment, the electrolyte flow rate was set to 1080 mL/min, and the
applied current density was 105 mA/cm?, which is consistent with the conditions in the numerical
simulation. The VRFB discharge cutoff voltage was 1.1 V.

Fig. 8 compares the simulation and experimental results for the discharge voltage at different
states of charge. The results indicate that the numerical model accurately reflects the behavior of the
battery during discharge. In the low state of charge region, the discrepancy between the numerical
results and the experimental results is more obvious. This is because the cell discharge voltage
decreased rapidly at the end of discharge, which increased the error in estimating the reactant

concentration during the discharge process.

(Dis)
Charger

Fig. 7 Test platform for a cell of the VRFB
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Fig. 8 Comparison of the numerical and experimental results

3.2 Velocity and pressure drop

The wvelocity distributions within the electrodes are significantly influenced by the
configuration of the flow frames, as illustrated in Fig. 9. A large area of high values is clearly
observed for Channel 1, which is located in the middle of the electrode. In contrast, high value areas
for Channels 5 and 20 are only located near the top and bottom of the electrodes.

Fig. 10 depicts the effect of flow rate on velocity distribution. Over Section 1, velocities along
a red line which is offset 30 mm from the top of the electrode (Line 1) were chosen for comparison.
As expected, velocity differences increase with increasing flow rates for all flow frames.
Interestingly, the number of velocity peaks is the same as the number of channels for Channels 1
and 5, coinciding with the velocity contour shown in Fig. 9. As channel numbers continue to increase,
velocity peaks transform into velocity plateaus at Channel 20. A similar phenomenon can be
observed along other lines, as evidenced by the velocity changes along lines 150 mm (Line 2) and
270 mm (Line 3) offset from the top of the electrode. Meanwhile, the velocity fluctuates relatively
gently along Line 2. This is mainly due to the significant resistance exerted on the fluid by the
porous electrode. According to Darcy's law, the higher the fluid velocity, the greater the resistance
it encounters. This causes the fluid in regions with higher velocity to diffuse towards adjacent
regions, leading to a more uniform velocity distribution. Additionally, we assessed velocity
fluctuations by dividing the standard deviation of the velocity by its mean value. Along Line 1 and
Line 3, Channels 5 and 20 show similar values. But along Line 2, Channel 5 has a more uniform

velocity than Channel 20, implying a more even distribution of concentration.



Another key performance parameter for the cell is the pressure drop, which affects the amount
of pump consumption during battery operation. An excessive pressure drop will reduce the system
efficiency during the charge/discharge cycle, and also necessitate stronger mechanical properties for
the components, which may increase manufacturing costs. Fig. 11 presents a comparison of the total
pressure drops of different flow frames, at flow rates ranging from 240-1080 mL/min. An
approximate positive linear relationship between total pressure drop and flow rate can be observed.
The total pressure drop for Channel 1 reaches 5.3 x 10* Pa at a flow rate of 1080 mL/min, while
the pressure drops for Channels 5 and 20 are relatively low. This may be because Darcy's law
governs fluid flow in porous electrodes. The pressure drop in the electrodes is further illustrated in
Fig. S3. A high value for Channel 1 is obvious, and Channel 5 and Channel 20 have almost the same
values. Note that the total pressure drop of Channel 5 is higher than that of Channel 20, implying
that the differences in the flow frames are responsible for this effect. Indeed, Channel 20 has a

shorter electrolyte path in its flow frame compared to Channel 5, as shown in Fig. S4.
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Fig. 9 The distribution of velocity (Section 1) at the negative electrode for all three flow frames (Q

= 600 mL/min). (a) Channel 1, (b) Channel 5, (¢) Channel 20
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Fig. 10 Velocity change along the red line for different flow frames (Section 1): (a) Channel 1, (b)
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Fig. 11 Total pressure drop for different flow frames across various electrolyte flow rates



3.3 Discharge voltage and V2* concentration distribution

Discharge voltage is an important factor in evaluating battery performance. Therefore, we
compare the discharge voltage for the three flow frame structures across different flow rates. In the
numerical simulations, the SOC is kept between 0.2-0.8 and the discharge current density is set at
105 mA/cm? The cut-off voltage was set to 1.1 V. The flow rates of catholyte and anolyte were
equivalent, and were increased from 240 mL/min to 1080 mL/min. The discharge voltage of
batteries with different flow frames across varying flow rates and SOCs is shown in Fig. 12. With
an increasing flow rate, the discharge voltages of all three flow frames rise. This is because the
higher flow rate can increase the concentrations of reactants in the electrodes. However when the
reactant concentrations become sufficient, this effect becomes weaker; also, the voltage difference
between the three flow frames decreases. Thus, the electrolyte flow rate is the main factor
influencing the discharge process of the VRFB. The Channel 5 structure has a higher discharge
voltage than the other structures, especially at low flow rates and SOCs. Interestingly, this contrasts
with the speculation that more channels would lead to a more even distribution of velocity and a

higher discharge voltage.
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Fig. 12 3D scatter plot of discharge voltage for the three flow frames at varying flow rates and

SOCs
We aim to explain this phenomenon by investigating the reactant concentration distribution in
the negative electrode. In Fig. 13, the concentration distributions of V* in Sections 1, 2, and 3 are

shown when the flow rate is 360 mL/min and the SOC is 0.3. Compared to Channel 5 and Channel



20, Channel 1 shows a large low-concentration region of V?*, which would significantly hinder
battery performance. For Channels 5 and 20, the V?* concentration distributions are similar, with
obvious high values near the diagonal lines. This phenomenon can be explained by the direction of
the pressure gradient in the porous electrode. As depicted in Fig. S5, the pressure is high near the
inlet and low near the outlet; this pressure gradient causes the fluid to flow from the inlet towards
outlet. Accordingly, V2 ions are transported along with the fluid, and follow the trend of the
diagonal line.

To evaluate the reactant concentrations, total values were calculated and are shown in Fig. 13.
The values over different sections follow the same order, that is, Channel 5 > Channel 20 > Channel
1. Moreover, this trend persists with increasing flow rates, as shown in Fig. S6. The superior value

for Channel 5 may be a consequence of the more uniform velocity distribution. As mentioned above,

) are 0.24, 0.013, and

Oy

along different lines for Channel 5, the velocity fluctuation values (u
average

0.25, which are always lower than their counterparts in Channel 20. Thus, the unique design of
Channel 5 promotes a higher reactant concentration within the electrode, leading to lower

concentration polarization and higher discharge voltage.
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Fig. 13 V2% concentration distribution and total values at different sections: (a) Channel 1, (b)
Channel 5, and (¢) Channel 20

3.4  Flow frame impact on system efficiency

Efficiency is a crucial parameter for evaluating the performance of a battery system. In the
operation of a VRFB, increasing the electrolyte flow rate can enhance the stack voltage, but also
leads to higher pump power consumption. Therefore, the selected flow rate needs to balance the
electrochemical reaction and the pump power consumption. We use the system efficiency to

comprehensively assess the impact of flow rate on these two aspects. To ascertain the optimal power



efficiency using different cell structures, a 10kW/40kWh VRFB model with 40 cells was built. Then,
the pump power of the entire stack and the power loss due to overpotential were investigated. The

VRFB system efficiency (Ypower) Was calculated as follows:

Pnet _ 1_Ploss+Ppump

= (26)
1/)power P total P total
M
Plosszzle (Up,-+77n,-)+PR (27)
=1
2(AP.oy + APg) - Q
pump = = (28)

l/)pump

where Ypower is the VRFB system efficiency, Ypump is the pump efficiency, Pye is the
output power, Pioea 18 the total input power, Byymp 1s the pump power consumption, Pjogs is the
stack power loss, Py is the stack ohmic power loss, AP is the pressure drop in the cells, and
AP; is the gravitational potential difference between the tank and the stack that needs to be
overcome.

The system efficiency of each flow frame at varying flow rates can be obtained from the VRFB
model, as shown in Fig. 14. As the flow rate increases, the system efficiency of each flow frame
gradually rises, and the gap between the efficiency of Channel 5 and Channel 20 gradually
disappears. After the flow rate reaches 960 mL/min, increasing the flow rate has little effect on the
system efficiency. A peak efficiency of 93.51% was observed at the electrolyte flow rate of 1080
mL/min for Channel 5 and Channel 20.
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Fig. 14 System efficiency for various flow frame structures at differing flow rates

From the ECM model, it was ascertained that an important parameter affecting the efficiency



of the stack is the resistance of each cell. Among these resistances, Rpy and Ry, are determined
by the thickness of the porous electrodes and bipolar plates; unfortunately, these are difficult to
change. R,. and R, can be increased by extending the lengths of the inlet/outlet pipes and
shirking the pipe cross-section in the cell, so as to reduce the shunt current. However, this also
increases the pressure drop as well as the pump consumption of the stack. Therefore we decide to
use the genetic algorithm (GA) to optimize the parameters such as pipe length and cross-section
width. Table 6 lists the optimization parameter ranges, and more detailed information on the GA
workflow can be found in the Supporting Information. The upper limit of the flow rate is based on
the pump's rated power, while the lower limit is set such that the system can operate normally
without damaging the electrolyte. The maximum values for pipe length and cross-section width are
constrained by the manufacturing precision. Our minimization objective (or objective function) is
the VRFB’s system loss efficiency in the discharging process.

Table 6 Optimization parameters and ranges

Parameters range Unit
Pipe length of the positive side (L) 0-3 m

Pipe length of the negative side (L) 0-3 m

Pipe cross-section width of the positive side (W,) 10 - 60 mm
Pipe cross-section width of the negative side (W,,) 10 - 60 mm
Flow rate (Q) 360 - 1080 mL/min

The optimal solutions obtained are shown in Table 7. Each solution includes the optimal sizes
and the corresponding system efficiency of the discharge process. The highest efficiency of 93.70%
was observed for Channel 5 at an electrolyte flow rate of 960 mL/min.

Table 7 Optimization results

Channel Ly(m) Ly, (m) W, (mm) W, (mm) Q (mL/min) Ypower
1 1.263  1.708 58 59 1080 92.65%
5 1.555  1.697 60 52 960 93.70%
20 1.141  1.709 45 53 977 93.63%

4 Conclusions

The performances of three different flow frame structures in a vanadium redox flow battery



(VRFB) were evaluated at both the cell and stack level. To analyze the flow field and species
concentration distribution at the cell level, a 3D model of the VFRB cells was developed. With this
model, the cell performance was compared across different flow rates and states of charge (SOC),
investigating factors such as pressure drop, velocity distribution, reactant concentration distribution,
and discharge voltage. The results showed that the pressure drop of the cell decreases gradually with
increasing numbers of channels in the flow frame. The cell with a five-channel flow frame was
superior to the other configurations at low reactant concentration. We also found that despite a high
flow rate enabling satisfactory discharge voltage, it also causes extra pumping consumption. Next,
we proposed an equivalent circuit model (ECM) of the stack to simulate the operation of the battery.
The system efficiency of the discharge process was used to evaluate different cell structures. The
voltage differences between cells and the conductivity of the electrolyte generates shunt currents
within the stack and piping system, which lead to energy losses and reduced system efficiency. The
cell parameters affecting the shunt current in the discharge process were therefore optimized using
a genetic algorithm. The final optimized configuration, using a five-channel flow frame, achieved a

maximum system efficiency of 93.70% at a flow rate of 960 mL/min.
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