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ABSTRACT

With the rapid development of autonomous driving technology, the
transportation system is undergoing an unprecedented revolution. Due to the
complexity of traffic rules and the real-time requirements of high-speed vehicles,
decision-making techniques are of critical importance. This paper focuses on
decision-making for high-speed autonomous driving, providing constraints for several
common highway scenarios, including lane changes, overtaking, and navigating
around accidents. In addition to making accurate decisions in these scenarios,
autonomous vehicles must comply with traffic regulations and ensure smooth driving,
avoiding sudden braking, sharp turns, and rapid acceleration. To address these
challenges, this paper proposes a hybrid approach combining an improved deep
reinforcement learning algorithm with rule-based control to design a decision-making
algorithm for high-speed driving. Simulation results demonstrate that the proposed
method improves decision accuracy by 25% compared to existing methods. These
results highlight the strong applicability and generalization potential of the approach
for real-world autonomous driving systems.

INTRODUCTION

The rapid advancement of autonomous driving technology has positioned
intelligent decision-making as a cornerstone for enhancing the safety and efficiency of
transportation systems. Autonomous vehicles (AVs) must navigate increasingly
complex traffic environments, characterized by high traffic density, dynamic road
conditions, and high-speed scenarios. Effective decision-making frameworks are
essential to address these challenges while ensuring compliance with traffic rules,
smooth driving dynamics, and the safety of both passengers and surrounding road
users.



In recent years, diverse decision-making models have emerged to tackle
specific challenges in autonomous driving. For instance, reinforcement learning-based
approaches have demonstrated significant potential in managing urban driving
scenarios by optimizing tasks like lane changes and overtaking (Chen et al., 2018).
Similarly, hybrid frameworks integrating deep reinforcement learning with model
predictive control have shown promise in handling highway driving complexities,
enhancing both decision accuracy and driving smoothness (Zhang et al., 2021).

Furthermore, addressing the interactions between autonomous and
human-driven vehicles remains a pivotal challenge. Studies emphasize the importance
of AVs predicting and adapting to the intentions of human drivers to ensure safety and
seamless integration into mixed-traffic environments. For example, AVs are typically
more conservative at higher speeds on arterials compared to human-driven vehicles,
which influences their interaction dynamics with manual vehicles (Sinha et al., 2021).
Another study explored how human drivers experience autonomous vehicles, noting
that experienced drivers often prefer conventional vehicles, while novice drivers are
more likely to trust AVs for their ease and safety (Manawadu et al., 2015).

Moreover, collaborative multi-agent systems and advanced communication
protocols are essential to ensure safe interactions between autonomous and
human-driven vehicles, particularly in mixed-traffic environments. Research has
highlighted how such systems can leverage road infrastructure, vehicle-to-vehicle
communications, and online motion prediction to enhance the safety and efficiency of
autonomous driving (Aoki et al., 2021).

Despite significant progress, challenges persist, particularly in integrating
holistic decision-making across diverse scenarios, managing the unpredictability of
human-driven vehicles, and enabling robust communication in multi-agent
frameworks. This paper addresses these gaps by proposing a hybrid decision-making
strategy that combines rule-based mechanisms with advanced reinforcement learning
to achieve adaptive, safe, and efficient decision-making for high-speed autonomous
driving scenarios. Our main contributions are as follows:

* Hybrid Approach: Integration of rule-based decision-making with advanced
deep reinforcement learning techniques to address the complexities of real-time
decision-making in diverse and unpredictable traffic scenarios.

* Guided Reward Reinforcement Learning Algorithm: Development of a
reinforcement learning algorithm with guided rewards to encourage safe,
rule-compliant, and efficient driving behavior.

* Comprehensive Testing: Implementation of diverse highway scenarios,
including real-world accident scenarios, in a simulation environment to thoroughly
evaluate decision-making abilities.

METHODOLOGY

Scenarios
This study evaluates the decision-making capabilities of autonomous vehicles
in multiple complex traffic scenarios, each designed to simulate real-world highway



driving conditions. The ego vehicle is required to avoid collisions, stay within lane
boundaries, comply with speed limits, and prevent severe discomfort (e.g., sudden
braking and sharp turns). The key scenarios include:

Straight road yielding: The ego vehicle travels from Area 1 to Area 2,
encountering other vehicles that may attempt to overtake from the rear or side at
random times, speeds, and positions. The vehicle must ensure safe and efficient
arrival while avoiding collisions, as illustrated in Figure 1(a).

Accident scene detouring: The ego vehicle encounters an accident (or a
broken-down vehicle) blocking the road, requiring a reasonable detour. The
surrounding traffic density, speed, and detour direction are randomized, as shown in
Figure 1(b).

Low-speed vehicle overtaking: The ego vehicle encounters a slow-moving
vehicle (traveling at less than 30% of the speed limit) and must safely and efficiently
overtake while considering the behavior of other road users, as depicted in Figure
1(c).

Same-lane construction scenario: The ego vehicle must navigate around a
construction site demarcated by cones while driving from Area 1 to Area 2 under
varying traffic densities, as shown in Figure 1(d).

These scenarios are intended to evaluate the robustness and adaptability of the
proposed decision-making strategy in handling common high-speed driving situations,
including overtaking, accident avoidance, and construction zones.
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Figure 1. Key scenarios in high-speed autonomous driving



Research objectives and method selection

The primary objective of this study is to develop a reliable decision-making
strategy for high-speed autonomous driving that ensures accuracy, compliance with
traffic regulations, and smooth driving dynamics. Compared to traditional
decision-making algorithms, the Proximal Policy Optimization (PPO) reinforcement
learning algorithm can effectively coordinate the relationships between various rules
and decisions by adjusting factors such as reward functions, thereby achieving
optimal results. One major advantage of the PPO algorithm is its simplicity in
implementation, while achieving results comparable to or even better than other
state-of-the-art algorithms, such as A2C, TRPO, and ACER, especially in navigation
problems.

Deep reinforcement learning (DRL) is used to train models that adaptively
learn optimal driving behaviors by interacting with the environment. Specifically,
Categorical PPO is used to control the vehicle's steering, speed, and acceleration.
These DRL methods effectively optimize the decision-making strategy through trial
and error, maximizing safety and efficiency.

Rule-based control complements DRL by providing deterministic and
interpretable control mechanisms, especially to mitigate the shortcomings of purely
learning-based approaches. For example, PID control is employed to stabilize lane
following after lane changes and to reduce jerks and large steering angles.

By combining these two methods, the system aims to leverage the adaptability
of DRL while ensuring reliability and stability through traditional control
mechanisms.

Reinforcement learning framework

The PPO agent interacts with the simulated environment and learns to make
optimal decisions through repeated trials, aiming to maximize a cumulative reward
that represents safe, efficient, and smooth driving behavior. To further enhance
learning efficiency, a dynamic reward function is used, incorporating elements like
collision avoidance, speed compliance, and passenger comfort. This reward function
guides the agent towards desirable behaviors and penalizes unsafe actions, such as
sudden lane changes or excessive acceleration. The framework diagram of the deep
reinforcement learning model training phase is shown in Figure 2.
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Figure 2. Reinforcement learning training flowchart




Action space: Training with a discrete action space is more straightforward
and feasible, particularly in the context of autonomous driving, where the primary
value of reinforcement learning lies in its ability to generate high-level decisions
rather than perform low-level controls. High-level control focuses on tasks such as
selecting lane changes or speed adjustments, rather than directly outputting
continuous variables like acceleration or steering angles. Given the inherent lack of
interpretability in neural network-based decision-making, deploying reinforcement
learning algorithms for real-world applications becomes significantly more practical
at the high-level decision-making layer. This facilitates seamless integration with
other control algorithms. In contrast, directly applying reinforcement learning to
low-level control tasks often encounters challenges in deployment feasibility.

To expedite convergence during training, a discrete action space is adopted. In
a simplified two-dimensional simulation environment, the discrete control actions for
the vehicle include: accelerate, decelerate, maintain speed, change to the left lane,
change to the right lane, adjust acceleration, and modify steering angle, shown in the
following parameters.

aspace = {Sacc b Sdec s vt b dt —left ° dt —right ° at > }/; }

State space: Considering that a single-frame observation cannot adequately
represent the high-level driving behavior of surrounding vehicles, the state at time ¢ is
represented using the observational data from the previous five frames, up to time 7.
This approach effectively captures temporal dependencies and provides a more
comprehensive representation of the driving environment. The details of the state
space are presented in Table 1.

Table 1. Main vehicle and obstacle status information

Vehicle Information Obstacle Information

e Deviation between the

e Deviation between the target area position ..
& P obstacle position and the

and the vehicle's current position

Vehicle's heading angle

Longitudinal velocity of the vehicle's rear
axle

Longitudinal acceleration of the vehicle's rear
axle

Lateral acceleration of the vehicle's rear axle
Steering angle of the front wheels

Steering angle of the front wheels in the
previous step

Longitudinal acceleration of the vehicle in the
previous step

Current lane offset of the vehicle

vehicle's current position
Obstacle's heading angle

Obstacle's velocity

Obstacle's acceleration

Obstacle's width
Obstacle's length

None

None

None




Network design: The overall network design is illustrated in Figure 3, where
the orange sections represent the vehicle's own information, and the yellow sections
correspond to information about surrounding obstacles. Two separate normalization
(Norm) modules are employed to standardize the vehicle's own data and obstacle data
independently. The processed information is then passed through a feature extraction
network, structured as a multi-layer perceptron (MLP), to extract features. The output
features are combined to form a vector that represents the feature of s; which is
subsequently used as input by both the Actor and Critic networks.
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Figure 3. The Overall network design

The detailed structure of the Feature Net2, depicted in Figure 4, processes
obstacle observations individually, regardless of the time step. Each obstacle
observation is mapped independently through an embedding layer. The mapped
results are then concatenated based on their respective time steps, preserving the
original order. This concatenated output is further passed through another embedding
layer to generate five vectors, each representing the aggregated obstacle features at a
specific time step. These vectors are then concatenated again, and the resulting feature
is mapped once more to obtain a representation of obstacle features over the past five
frames. This temporal representation captures the dynamic environment effectively,
enabling more informed decision-making.
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Figure 4. Feature Net2 design

Reword design: to enable the vehicle to perform complex actions across
various scenarios and reach the desired target point, a composite reward function is
designed. The total reward is composed of three components: a basic reward, a
collision avoidance reward, and a rule compliance reward. These components are
combined to form the total reward, as shown in the following equation.



v,

total = rbase +ax rcallide + ﬂ x rrule

The reward design includes the following considerations: (1) No collision
penalty is applied during terminal states in training. (2) The longitudinal collision
avoidance reward only considers obstacles/vehicles in front of the ego vehicle. (3)
The coefficients @ and f correspond to the collision avoidance reward and rule
compliance reward, respectively. As the training progresses, the weight of the rule
compliance reward is gradually increased, guiding the autonomous vehicle to learn
more complex behaviors. This dynamic reward adjustment aims to transition the
vehicle from merely reaching the destination to doing so while adhering to traffic
rules. In the early stages of training, the vehicle primarily relies on the basic reward to
learn effective obstacle avoidance and to successfully reach the target. During the
later stages, the rule compliance reward weight is dynamically adjusted, encouraging
the vehicle to achieve stable and compliant driving behaviors. The detailed structure
of the reward design is illustrated in Table 2.

Table 2. Composite reward design

Reward Items Value
. Step reward -0.1
Basic )
rewards Distance reward 0.5X Ad
Arrival rewards 200
(s ) Collision rewards -200
Overtime reward -200
Collision Longltudlpal collision min(=0.1x(1+(d,., — d.)),0)
avoidance avoidance -
rewards
(ro Y Lateral collision avoidance min(=0.1x(1+(d . —d,)),0)
collide
Overspeed —0.1xmax(v-v,,,,0)
Rul . .
we Large steering —max(-0.4— (‘]el’ky ‘ -0.7)x3,-1.0)
rewards
(Fe) Sudden braking/acceleration ~ —max(~0.4— (| jerk,|-0.7)x3,-0.9)
Keep Lane centerline —max(offset —0.5,0)

PID control and rules for enhancing model performance

Although Categorical PPO has achieved commendable success rates,
trajectory playback and data analysis revealed issues arising from the use of a discrete
action space, which introduces coarse action granularity. This granularity results in
instability, including noticeable jitter and difficulty maintaining straight-line driving
on straight roads. Additionally, significant overshooting occurs during directional
adjustments, leading to sharp steering maneuvers. To address these challenges, a PID
controller was incorporated to enhance stability during straight-line driving.



Furthermore, action masking mechanisms were introduced to improve safety by
preventing unintended or unsafe actions. The detailed implementation is illustrated in
Figure 5.

Reinforcement learning is responsible for controlling the vehicle's steering and
speed, while the PD controller is tasked with ensuring stability after lane changes. To
achieve seamless integration between reinforcement learning and the PD-based
control scheme, a hybrid strategy was designed to maintain stability across various
lane control scenarios. The integration strategy is outlined as follows:

Turning — Straight Driving: When the current lane offset reaches the
predefined threshold for alignment, the PD controller takes over the steering angle to
stabilize the vehicle.

Straight Driving — Turning: When the current distance to the front vehicle
falls below the specified safety threshold, reinforcement learning assumes control to
manage obstacle avoidance and lane changes.

Straight Driving — Straight Driving (Speed Suppression): When the safe
time to collision is less than the defined critical threshold, rule-based control overrides
acceleration to execute emergency braking.

This hybrid approach ensures the stability and safety of the vehicle across
various driving scenarios while leveraging the strengths of both reinforcement
learning and rule-based controls.

wﬂm /

Figure 5. Add PD controller for model enhancement

SIMULATIONS AND RESULTS

In autonomous driving simulation experiments, our proposed approach was
tested in both our integrated simulation environment and the existing Highway-env
environment. As illustrated in Figures 6(a), 6(b), 6(c), and 6(d), the ego vehicle
demonstrated the ability to make accurate decisions in various randomized traffic
scenarios. These scenarios included straight-road yielding, detouring around
low-speed vehicles, and navigating same-lane construction zones. The results
highlight the effectiveness of our hybrid decision-making framework in handling
complex traffic conditions and making safe, efficient, and context-aware driving
decisions. This hybrid approach ensures the stability and safety of the vehicle across
various driving scenarios while leveraging the strengths of both reinforcement
learning and rule-based controls.



The experimental results demonstrate the advantages of the proposed
reinforcement learning framework with compound rewards over the standard PPO
algorithm. Specifically, six experiments were conducted to evaluate the performance
in terms of average driving time, success rates, and lane stability under various
highway scenarios.

Figure 7(a) illustrates the comparison of average driving time between the
standard PPO and PPO with compound rewards. The compound reward PPO
consistently achieved shorter driving times across all experiments, with an average
improvement of approximately 30%. This indicates the effectiveness of compound
rewards in optimizing high-speed decision-making, enabling vehicles to navigate
efficiently while maintaining safety and stability.

construCHiE

Slow car

(c) Avoid other vehicles in Highway-env (d) Overtaking in Highway-env
Figure 6. Simulation result

In addition, the success rate comparison (Figure 7(b)) highlights a substantial
improvement with the enhanced model. The success rate increased from an average of
61% with standard PPO to 86% with the incorporation of compound rewards, PID
control, and rule-based adjustments. This improvement underscores the stability and
robustness of the hybrid approach in handling complex traffic scenarios, such as lane
changes and obstacle avoidance.

Figure 7(c) compares the steering angle variations between the two methods.
The hybrid approach significantly reduced sharp steering adjustments, minimizing the
risk of unstable maneuvers. The integration of PID control and action masking
effectively addressed the limitations of coarse action granularity in discrete action
spaces, ensuring smoother and safer driving dynamics.

Furthermore, Figure 7(d) highlights the improvement in maintaining lane
stability during straight-line driving. The standard PPO exhibited frequent oscillations
when controlling the vehicle on straight roads, resulting in deviations from the lane



center. In contrast, the proposed hybrid approach, with the integration of PID control
for straight-line stability, effectively eliminated oscillations, ensuring smooth and
jitter-free motion. This improvement demonstrates the ability of the framework to
maintain precise control over the vehicle's trajectory, even in high-speed
environments.

Overall, these results demonstrate that the proposed hybrid framework,
combining reinforcement learning, PID control, and rule-based mechanisms, not only
enhances the performance of autonomous driving systems in high-speed environments
but also ensures a balance between efficiency, safety, and driving stability.
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Figure 7. Simulation result

CONCLUSION

This study proposed a novel hybrid decision-making framework for
high-speed autonomous driving, integrating reinforcement learning, PID control, and
rule-based mechanisms to effectively tackle the challenges of complex traffic
scenarios. By testing the framework in both custom-built and standardized simulation
environments, we demonstrated significant improvements in decision accuracy,
driving stability, and compliance with traffic regulations. Specifically, the integration
of PID control reduced oscillations during straight-line driving, ensuring smoother
and more stable vehicle motion. Rule-based adjustments played a critical role in
enhancing safety by mitigating abrupt maneuvers, while the compound reward
structure allowed reinforcement learning to achieve higher success rates and faster
driving times, striking an optimal balance between efficiency and safety.
Comprehensive testing in challenging scenarios such as straight-road yielding,
low-speed vehicle detouring, and construction zone navigation confirmed the



framework's robustness, effectiveness, and generalization capabilities across various
driving conditions. These findings underscore the significant potential of combining
data-driven and rule-based methods to create more reliable, efficient, and safe
autonomous driving solutions. The contributions of this study provide a strong
foundation for future work, which will extend the framework to more dynamic,
cooperative, and real-world driving environments.
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